Skip to main content

Advertisement

Log in

Relationships between geomorphological features and groundwater geochemistry in the upper and middle basin of Las Peñas stream, Pampean Mountains, Córdoba. Argentina

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Las Peñas stream basin, located in the Pampean Mountains of Cordoba (Argentina), has specific groundwater features which are of great interest for the local socioeconomic activities. The objective of this work is to define the geomorphological characteristics of the basin and interpret their influence on hydrogeological processes, emphasizing hydrodynamic and hydrogeochemical aspects. Groundwater flow in the unconfined aquifer has developed in both sediments and fractured rocks. The groundwater is fresh with electrical conductivities between 586 µS/cm and 2000 µS/cm, although there are localized samples in the piedmont of brackish type (up to 3900 µS/cm). Sampled groundwaters are almost entirely of calcium and sodium bicarbonate geochemical type, with local occurrence of mixed type (sodium-calcium bicarbonate and sodium bicarbonate-sulfate) waters. Taking into account geomorphological and lithological features, both groundwater flow and hydrochemical aspects are linked with the main geomorphological environments: a relict paleosurface with a sedimentary cover, a rocky dissected paleosurface with filled valleys and the sedimentary piedmont. It was interpreted that groundwater geochemistry is mainly linked to input from precipitation and weathering of silicates. Dissolution of carbonates and cation exchange processes contribute to the observed groundwater chemistry especially in the relict paleosurface and piedmont.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data as well as software application claims and comply with field standards.

References

  • Adji T, Sejati S (2014) Identification of groundwater potential zones within an area with various geomorphological units by using several field parameters and a GIS approach in Kulon Progo Regency, Java Indonesia. Arab J Geosci. https://doi.org/10.1007/s12517-012-0779-z

    Article  Google Scholar 

  • American Public Health Association (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington DC, p 1220

    Google Scholar 

  • Andreazzini J, Degiovanni S (2014) Geomorphology of Paleosurfaces in the Sierras de Comechingones, Central Pampean Ranges, Argentina. In: Rabassa J, Ollier C (eds) Gondwana Landscapes in southern South America. Springer Earth System Sciences, Netherlands, pp 305–330

    Chapter  Google Scholar 

  • Bécher Quinodóz F, Blarasin M (2017) Evaluación de relaciones geomorfología—calidad de agua subterránea mediante técnicas estadísticas y modelación numérica en la planicie arenosa del Sur de Córdoba Argentina. Geoacta 41(2):1–17 (ISSN 1852-7744)

    Google Scholar 

  • Bécher Quinodóz F, Maldonado L, Blarasin M, Lutri V, Cabrera A, Giuliano Albo MJ, Matteoda E (2019a) Hydrogeological and hydrogeochemical characterization of the unconfined aquifer in the fluvioeolian plain of Cordoba (Argentina). Hydrol Res 50(2):725–743. https://doi.org/10.2166/nh.2018.043

    Article  Google Scholar 

  • Bécher Quinodóz F, Maldonado L, Blarasin M, Matteoda E, Lutri V, Cabrera A, Giuliano Albo J, Giacobone D (2019b) The development of a conceptual model for arsenic mobilization in a fluvio-eolian aquifer using geochemical and statistical methods. Environ Earth Sci 78(6):206. https://doi.org/10.1007/s12665-019-8201-8

    Article  Google Scholar 

  • Blarasin M, Cabrera A, BécherQuinodóz F, Felizzia J, GiulianoAlbo MJ (2013) The incidence of relief studies in the finding of water for human supply in the Dune Plain of Cordoba. In: González N, Kruse E, Trovatto MM, Laurencena P (eds) Groundwater Strategic Resource, vol 1. EDULP, La Plata, pp 218–225

    Google Scholar 

  • Blarasin M, Cabrera A, Matteoda E (2014) Aguas subterráneas de la provincia de Córdoba, 1st edn. (UNIRIO) National University of Río Cuarto, Río Cuarto, p 148

    Google Scholar 

  • Bonalumi A, Martino R, Sfragulla JA, Carignano C, Tauber A (2005) Hoja Geológica 3363-I Villa María Provincia de Córdoba. Instituto de Geología y Recursos Minerales SEGEMAR Boletín, Buenos Aires

    Google Scholar 

  • Cabrera A, Blarasin M, Dapeña C, Maldonado L (2013) Composición físicoquímica e isotópica de precipitaciones del sur de Córdoba Estación Río Cuarto Red Nacional de Colectores Argentina. Temas actuales hidrología subterránea. Edulp, La Plata, pp 35–42

    Google Scholar 

  • Cabrera A, Blarasin M, Matteoda E, Giuliano Albo MJ (2009) Modelación geoquímica del acuífero freático sedimentario en la zona de San Basilio, Córdoba Argentina. Aportes De La Hidrogeología Al Conocimiento De Los Recursos Hídricos 2:651–660

    Google Scholar 

  • Carignano C, Cioccale M, Rabassa J (1999) Landscape antiquity of the central-eastern Sierras Pampeanas (Argentina): geomorphological evolution since Gondwanic times. Zeitschrift Fur Geomorphologie Supplementband 118:245–268

    Google Scholar 

  • Carignano C, Kröhling D, Degiovanni S, Cioccale M (2014) Geomorfología. In: Martino RD, Guereschi AB (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Asociación Geológica Argentina, Córdoba, pp 747–822

    Google Scholar 

  • Cartwright I, Weaver TR, Stone D, Reid M (2007) Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray basin, Australia. J Hydrol 332:69–92

    Article  Google Scholar 

  • Chardon ES, Livens FR, Vaughan DJ (2006) Reactions of feldspar surfaces with aqueous solutions. Earth Sci Rev 78(1–2):1–26

    Article  Google Scholar 

  • Currell M, Cartwright I (2011) Major-ion chemistry, δ13C and 87Sr/86Sr as indicators of hydrochemical evolution and sources of salinity in groundwater in the Yuncheng Basin. China Hydrogeol J. https://doi.org/10.1007/s10040-011-0721-6

    Article  Google Scholar 

  • Custodio E, Llamas MR (1983) Hidrogeología Subterránea, 2nd edn. Omega, SA Barcelona

    Google Scholar 

  • Degiovanni S (2008) Análisis geoambiental del comportamiento de los sistemas fluviales del Sur de Córdoba, en especial del arroyo Achiras-del Gato, como base para su gestión sustentable. Unpublished PhD Thesis, National University of Río Cuarto.

  • del Pilar AM, Weiler N, Hernández M (2010) Linking geomorphology and hydrodynamics: a case study from Península Valdés, Patagonia Argentina. Hydrogeol J. https://doi.org/10.1007/s10040-009-0528-x

    Article  Google Scholar 

  • Demichelis A (1986) Geología de la Sierra de Las Peñas. Unpublished Degree Thesis, National University of Río Cuarto.

  • Destéfanis G, Martínez JO, Gaiero DM, Ribeiro G (2019) Geoquímica de las aguas superficiales y efectos de la meteorización en la cuenca alta-media del Río Ctalamochita. V Reunión Argentina de Geoquímica de la Superficie (RAGSU), La Plata

    Google Scholar 

  • Elango L, Kannan R, Senthil Kumar M (2003) Major ion chemistry and identification of hydrogeochemical processes of groundwater in a part of Kancheepuram district, Tamil Nadu India. Jo Environ Geosci 10:157–166

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allegre CJ (2019) Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem Geol 159(1–4):3–30

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Sci J 170:1088–1090. https://doi.org/10.1126/science.170.3962.1088

    Article  Google Scholar 

  • Gout R, Oelkers EH, Schott J, Wick A (1997) The surface chemistry and structure of acid-leached albite: new insights on the dissolution mechanism of the alkali feldspars. Geochim Cosmochim Acta 61(14):3013–3018

    Article  Google Scholar 

  • Kim K (2002) Plagioclase weathering in the groundwater system of a sandy, silicate aquifer. Hydrol Process 16(9):1793–1806

    Article  Google Scholar 

  • Kröhling D, Carignano C (2014) La estratigrafía de los depósitos sedimentarios cuaternarios. In: RobertoMartino D, AlinaGuereschi B (eds) Relatorio del XIX Congreso Geológico Argentino: Geología y Recursos Naturales de la Provincia de Córdoba. Asociación Geológica Argentina, Córdoba, pp 663–684

    Google Scholar 

  • Matteoda E (2012) Evaluación hidrodinámica e hidrogeoquímica de la cuenca del arroyo El Barreal para establecer línea de base ambiental, con énfasis en la geoquímica del cromo. Unpublished PhD Thesis, National University of Río Cuarto.

  • Nicolli HB, Suriano J, Gómez Peral M, Ferpozzi L, Balean O (1989) Groundwater contamination with Arsenic and other trace elements in an area of the province of Córdoba Argentina. Environ Geol Water Sci 14(1):3–16

    Article  Google Scholar 

  • Rabassa J, Carignano C, Cioccale M (2014) A general overview of Gondwana landscapes in Argentina. In: Rabassa J, Ollier C (eds) Gondwana landscapes in southern South America. Springer Earth System Sciences, Netherlands, pp 201–245

    Chapter  Google Scholar 

  • Rajaveni SP, Brindha K, Elango L (2017) Geological and geomorphological controls on groundwater occurrence in a hard rock region. Appl Water Sci 7(3):1377–1389

    Article  Google Scholar 

  • Ravelo A, Herrero C (1999) PDIWIN v 1.0. Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales.

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. Methods and techniques of groundwater investigation and development, vol 33. Water Research Series, Paris, pp 54–83

    Google Scholar 

  • Subramani T, Rajmohan N, Elango L (2010) Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region southern India. Environ Monit Assess 162(1–4):123–137

    Article  Google Scholar 

  • United Nations Educational, Scientific and Cultural Organization (2019) Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2019: No dejar a nadie atrás. World program for evaluation of Hydric Resources, UNESCO, Paris, p 198 (ISBN: 978-92-3-300108-4)

    Book  Google Scholar 

  • Wood WW (2019) Geogenic groundwater solutes: the myth. Hydrogeol J 27(8):2729–2738

    Article  Google Scholar 

  • Yang Q, Li Z, Ma H, Wang L, Delgado J (2016) Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the southeastern part of Ordos basin, China. Environ Pollut. https://doi.org/10.1016/j.envpol.2016.08.017

    Article  Google Scholar 

  • Zhang H, Xu G, Zhan H, Chen X, Liu M, Wang M (2020) Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions. J Hydrol 589:125344. https://doi.org/10.1016/j.jhydrol.2020.125344

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Secretaría de Ciencia y Técnica (National University of Rio Cuarto), Fondo para la Investigación Científica y Tecnológica (FONCYT Argentina—PICT 2015-0474) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) that supported this research.

Funding

The research was supported by Secretaría de Ciencia y Técnica (Universidad Nacional de Río Cuarto) and Fondo para la Investigación Científica y Tecnológica (FONCYT Argentina - PICT 2015-0474).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SP, MB, SD, VL, CE, FBQ, DG and AC. The first draft of the manuscript was written by SP, MB and MC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Pramparo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramparo, S., Blarasin, M., Currell, M. et al. Relationships between geomorphological features and groundwater geochemistry in the upper and middle basin of Las Peñas stream, Pampean Mountains, Córdoba. Argentina. Environ Earth Sci 81, 339 (2022). https://doi.org/10.1007/s12665-022-10456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10456-z

Keywords

Navigation