Skip to main content
Log in

Mineral water occurrence and geochemistry in the Azores volcanic archipelago (Portugal): insight from an extended database on water chemistry

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The occurrence and geochemistry of mineral water discharges in the Azores (Portugal) have been studied. Due to the volcanic nature of the archipelago, mineral water discharges occur in seven of the nine islands, namely at São Miguel, Terceira, São Jorge, Pico, Faial, Graciosa and Flores, both associated to perched-water and basal aquifers, and mainly corresponding to springs (72.4 %). The majority of the 116 discharges with water geochemistry data occurs in São Miguel island (73.3 %). Water temperature ranges between 13.2 and 99.8 °C (average 37.1 °C), being 63.8 % of the samples in the dataset classified as thermal. Waters are mainly acid to slightly alkaline, with pH values ranging between 2.1 and 7.9 (average 5.85). Despite the wide range of electrical conductivity values (122–53,000 μS/cm), the median value (876 μS/cm) suggests that in general waters in the dataset are poorly mineralized, being mainly from the Na–HCO3 and Na–HCO3–Cl types, besides a few samples are from Na–SO4 and Na–SO4–HCO3 types. Instead, waters abstracted in basal aquifers are mainly from the Na–Cl type. Principal component analysis, as well as a classic hydrogeochemistry approach, suggests that mineral water chemistry evolves as function of several processes, as silicate weathering, enhanced by water temperature, not excluding mixing mechanisms between cold and hot waters. Regarding the SO4-rich thermal waters, steam-heating inputs are also to be considered. Dilution of volcanic CO2 may also influence the chemical evolution of mineral waters. The influence of seawater over the mineral water chemistry in basal aquifers is shown by the much higher conductivity and Cl content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abdel-Monen A, Fernandez L, Boone G (1975) K/Ar ages from the eastern Azores group (Santa Maria, São Miguel and the Formigas Islands. Lithos 4:247–254

    Article  Google Scholar 

  • APHA-AWWA-WPCF (1985) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  • Bencini A, Martini M, Piccardi G (1982) New investigations on thermal manifestations of S. Miguel (Azores). Arquipélago 3:301–312

    Google Scholar 

  • Bonfanti P, D’Alessandro W, Dongarrà G, Parello F, Valenza M (1996) Medium term anomalies in groundwater temperature before 1991–1993 Mt. Etna eruption. J Volcanol Geotherm Res 73:303–308

    Article  Google Scholar 

  • Carvalho MR, Forjaz VH, Almeida C (2006) Chemical composition of deep hydrothermal fluids in the Ribeira Grande geothermal field (São Miguel, Azores). J Volcanol Geotherm Res 156:116–134

    Article  Google Scholar 

  • Carvalho MR, Mateus A, Nunes JC, Carvalho JM (2011) Chemistry of the Ferraria thermal water, S. Miguel Island, Azores: mixing and precipitation processes. Environ Earth Sci 64:539–547

    Article  Google Scholar 

  • Chiodini G, Cioni R, Frullani A, Guidi M, Marini L, Prati F, Raco B (1996) Fluid geochemistry of Montserrat Island, West Indies. Bull Volcanol 58:380–392

    Article  Google Scholar 

  • Cioni R, Fanelli G, Guidi M, Kinyariro JK, Marini L (1992) Lake Bogoria hot springs (Kenya): geochemical features and geothermal implications. J Volcanol Geotherm Res 50:231–246

    Article  Google Scholar 

  • Cordeiro S, Coutinho R, Cruz JV (2012) Fluoride content in drinking water supply in São Miguel volcanic island (Azores, Portugal). Sci Total Environ 432:23–36

    Article  Google Scholar 

  • Costa A (2006) Atlas hidrogeológico das águas minerais dos Açores. Dissertation, University of the Azores (in Portuguese with English abstract)

  • Cruz JV (1997) Estudo hidrogeológico da Ilha do Pico (Açores— Portugal). PhD dissertation, University of the Azores (in Portuguese with English abstract)

  • Cruz JV (2003) Groundwater and volcanoes: examples from the Azores archipelago. Environ Geol 44:343–355

    Article  Google Scholar 

  • Cruz JV (2004) Ensaio sobre a água subterrânea nos Açores. História, ocorrência e qualidade. SRA, Ponta Delgada (in Portuguese)

  • Cruz JV, Amaral C (2004) Major ion chemistry of groundwaters from perched-water bodies at Azores (Portugal) volcanic archipelago. App Geochem 19:445–459

    Article  Google Scholar 

  • Cruz JV, França Z (2006) Hydrogeochemistry of thermal and mineral springs of the Azores archipelago (Portugal). J Volcanol Geotherm Res 151:382–398

    Article  Google Scholar 

  • Cruz JV, Silva MO (2000) Groundwater salinisation in Pico island (Azores, Portugal): origin and mechanisms. Environ Geol 39:1181–1189

    Article  Google Scholar 

  • Cruz JV, Coutinho RM, Carvalho MR, Oskarsson N, Gislason SR (1999) Chemistry of waters from Furnas volcano, São Miguel, Azores: fluxes of volcanic carbon dioxide and leached material. J Volcanol Geotherm Res 92:151–167

    Article  Google Scholar 

  • Cruz JV, Antunes P, França Z, Nunes JC, Amaral C (2006) Volcanic lakes from the Azores archipelago (Portugal): geological setting and geochemical characterization. J Volcanol Geotherm Res 156:135–157

    Article  Google Scholar 

  • Cruz JV, Freire P, Costa A (2010) Mineral waters characterization in the Azores archipelago (Portugal). J Volcanol Geotherm Res 190:353–364

    Article  Google Scholar 

  • Cruz JV, Coutinho R, Pacheco D, Cymbron R, Antunes P, Freire P, Mendes S (2011) Groundwater salinization in the Azores archipelago (Portugal). Environ Earth Sci 62:1273–1285

    Article  Google Scholar 

  • Cruz JV, Silva MO, Dias MI, Prudêncio MI (2013) Groundwater composition and pollution due to agricultural practices at Sete Cidades volcano (Azores, Portugal). App Geochem 29:162–173

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

  • D’Alessandro W, Brusca L, Kyriakopoulos K, Michas G, Papadakis G (2008) Methana, the westernmost active volcanic system of the south Aegean arc (Greece): insight from fluids geochemistry. J Volcanol Geotherm Res 178:818–828

    Article  Google Scholar 

  • De Gregorio S, Camarda M, Longo M, Cappuzzo S, Giudice G, Gurrieri S (2011) Long-term continuous monitoring of the dissolved CO2 performed by using a new device in groundwater of Mt. Etna (southern Italy). Water Res 45:3005–3011

    Article  Google Scholar 

  • Di Napoli R, Aiuppa A, Bellomo S, Brusca L, D’Allessandro W, Gagliano Candela E, Longo M, Pecoraino G, Valenza M (2009) A model for Ischia hydrothermal system: evidences from the chemistry of thermal groundwaters. J Volcanol Geotherm Res 186:133–159

    Article  Google Scholar 

  • Dotsika E, Poutoukis D, Michelot JL, Raco B (2009) Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean Volcanic arc (Greece): evidence of Arc-Type Magmatic Water (ATMW) participation. J Volcanol Geotherm Res 179:19–32

    Article  Google Scholar 

  • Drever JI (1982) The geochemistry of natural waters. Surface and groundwater environments. Prentice-Hall, Upper Saddle River

  • DROTRH/INAG (2001) Plano Regional da Água. Relatório técnico. DROTRH-INAG, Ponta Delgada, p 575 (in Portuguese)

  • Edmunds M, Smedley P (2004) Fluoride in natural waters. In: Selinus O, Alloway B, Centeno J, Finkelman R, Fuge R, Lindh U, Smedley P (eds) Essential of medical geology. Impacts of the natural environment on public health. Elsevier, Amsterdam, pp 301–329

    Google Scholar 

  • Eff-Darwich A, Coello J, Viñas R, Soler V, Martin-Luis MC, Farrujia I, Quesada ML, Nuez J (2008) Underground temperature measurements as a tool for volcanic activity monitoring in the island of Tenerife, Canary Islands. Pure appl Geophys 165:135–145

    Article  Google Scholar 

  • Evans WC, Sorey ML, Cook AC, Kennedy BM, Shuster DL, Colvard EM, White LD, Huebner MA (2002) Tracing and quantifying magmatic carbon discharge in cold groundwaters: lessons learned from Mammoth Mountain, USA. J Volcanol Geotherm Res 114:291–312

    Article  Google Scholar 

  • Evans W, Bergfeld D, van Soest M, Huebner M, Fitzpatrick J, Revesz K (2006) Geochemistry of low-temperature springs northwest of Yellowstone caldera: seeking the link between seismicity, deformation, and fluid flow. J Volcanol Geotherm Res 154:169–180

    Article  Google Scholar 

  • Federico C, Aiuppa A, Favara R, Gurrieri S, Valenza M (2004) Geochemical monitoring of groundwaters (1998–2001) at Vesuvius volcano (Italy). J Volcanol Geotherm Res 133:81–104

    Article  Google Scholar 

  • Ferreira T, Oskarsson N (1999) Chemistry and isotopic composition of fumarole discharge of Furnas caldera. J Volcanol Geotherm Res 92:169–179

    Article  Google Scholar 

  • Ferreira T, Gaspar JL, Viveiros F, Marcos M, Faria C, Sousa F (2005) Monitoring of fumarole discharge and CO2 soil degassing in the Azores: contribution to volcanic surveillance and public health risk assessment. Ann Geophys 48:787–796

    Google Scholar 

  • Freire P (2006) Águas minerais e termais da ilha de São Miguel (Açores): caracterização hidrogeológica e implicações para a monitorização vulcanológica. Dissertation, University of the Azores (in Portuguese with English abstract)

  • Freire P, Andrade C, Coutinho R, Cruz JV (2013) Spring geochemistry in an active volcanic environment (São Miguel, Azores): source and fluxes of inorganic solutes. Sci Total Environ. doi:10.1016/j.scitotenv.2013.06.073

    Google Scholar 

  • Gaspar JL, Queiroz G, Pacheco JM, Ferreira T, Wallenstein N, Almeida MH, Coutinho R (2003) Basaltic lava balloons produced during the 1998–2001 Serreta submarine ridge eruption (Azores). In: White JDL, Smellie JL, Clague DA (eds), Explosive subaqueous volcanism, Geophysical Monograph 140, American Geophysical Union, pp 205–212

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Ca–Mg geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Goff F, McMurtry GM, Counce D, Simac JA, Roldán-Manzo AR, Hilton DR (2000) Contrasting hydrothermal activity at Sierra Negra and Alcedo volcanoes, Galapagos Archipelago, Ecuador. Bull Volcanol 62:34–52

    Article  Google Scholar 

  • Grassa F, Capasso G, Favara R, Inguaggiato S (2006) Chemical and isotopic composition of waters and dissolved gases in some thermal springs of Sicily and adjacent volcanic islands, Italy. Pure App Geophys 163:781–807

    Article  Google Scholar 

  • Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, Southern China. J Volcanol Geotherm Res 215–216:61–73

    Article  Google Scholar 

  • Jang Ch-S (2010) Applying scores of multivariate statistical analyses to characterize relationships between hydrochemical properties and geological origins of springs in Taiwan. J Geochem Exp 105:11–18

    Article  Google Scholar 

  • Joseph EP, Fournier N, Lindsay JM, Fisher TP (2011) Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc. J Volcanol Geotherm Res 206:1–14

    Article  Google Scholar 

  • Lewicki J, Fischer T, Williams S (2000) Chemical and isotopic compositions of fluids at Cumbal Volcano, Colombia: evidence for magmatic contribution. Bull Volcanol 62:347–361

    Article  Google Scholar 

  • Love D, Hallbauer D, Amos A, Hranova R (2004) Factor analysis as a tool in groundwater quality management: two southern African case studies. Phys Chem Earth 29:1135–1143

    Article  Google Scholar 

  • Martínez D, Londoño O, Massone H, Buitrago P, Lima L (2012) Hydrogeochemistry of fluoride in the Quequen river basin: natural pollutants distribution in the argentine pampa. Environ Earth Sci 65:411–420

    Article  Google Scholar 

  • Martini M, Giannini L, Buccianti A, Prati F, Cellini Legittimo P, Lozelli P, Capaccioni B (1991) 1980–1990: ten years of geochemical investigation at Phlegrean Fields (Italy). J Volcanol Geotherm Res 48:161–171

    Article  Google Scholar 

  • Meng SX, Maynard JB (2001) Use of statistical analysis to formulate conceptual models of geochemical behavior: water chemical data from the Botucatu aquifer in São Paulo state, Brazil. J Hydrol 250:78–97

    Article  Google Scholar 

  • Minissale A, Mattash M, Vaselli O, Tassi F, Al-Ganad I, Selmo E, Shawki N, Tedesco D, Poreda R, Ad-Dukhain A, Hazzae M (2007) Thermal springs, fumaroles and gas vents of continental Yemen: their relation with active tectonics, regional hydrology and the country’s geothermal potential. App Geochem 22:799–820

    Article  Google Scholar 

  • Morell I, Pulido Bosch A, Daniele L, Cruz JV (2008) Chemical and isotopic assessment in volcanic thermal waters: cases of Ischia (Italy) and São Miguel (Azores, Portugal). Hydrol Process 22:4386–4399

    Article  Google Scholar 

  • Nordstrom DK, Jenne AJ (1977) Fluorite solubility equilibria in selected geothermal waters. Geochim Cosmochim Acta 4:175–188

    Article  Google Scholar 

  • Nordstrom DK, McCleskey RB, Ball JW (2009) Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV acid-sulfate waters. App Geochem 24:191–207

    Article  Google Scholar 

  • Oskarsson N (1994) Volcanic components in groundwater: monitoring and interpretation. In: Barberi F, Casale R, Fantechi R (eds) Proceedings of the course on Mitigatio of volcanic hazards. European Commission, Brussels, pp 393–401

    Google Scholar 

  • Pacheco JM, Ferreira T, Queiroz G, Wallenstein N, Coutinho R, Cruz JV, Pimentel A, Silva R, Gaspar JL, Goulart C (2013) Notas sobre a geologia do arquipélago dos Açores. In: Dias R, Araújo A, Terrinha P, Kullberg JC (eds) Geologia de Portugal. Escolar Editora, Lisboa, pp 595–690 (in Portuguese)

    Google Scholar 

  • Papatheodorou G, Lambrakis N, Panagopoulos G (2007) Application of multivariate statistical procedures to the hydrochemical study of a coastal aquifer: an example from Crete, Greece. Hydrol Process 21:1482–1495

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations Water-Resources Investigation Report 99–4259. USGS, Denver

    Google Scholar 

  • Queiroz G (1997) Vulcão das Sete Cidades (S. Miguel, Açores): história eruptiva e avaliação do hazard. Dissertation, University of the Azores

  • Queiroz G, Gaspar JL, Cole PD, Guest JE, Wallenstein N, Duncan AM, Pacheco JM (1995) Erupções vulcânicas no vale das Furnas (ilha de S. Miguel, Açores) na primeira metade do Séc. XV. Açoreana 8:159–168 (in Portuguese)

    Google Scholar 

  • Quintela A, Almeida SFP, Terroso D, Ferreira da Silva E, Forjaz V, Rocha F (2013) Diatom assemblages of thermal and mineral waters from volcanic environments in São Miguel Island, Azores. Diatom Res 28:407–417

    Article  Google Scholar 

  • Schoeller H (1962) Les Eaux Souterraines. Hydrologie dynamique et chimique, Recherche, Exploitation et Évaluation des Ressources. Masson et Cie, Paris (in French)

  • Searle R (1980) Tectonic pattern of the Azores spreading centre and triple junction. Earth Planet Sci Lett 51:415–434

    Article  Google Scholar 

  • Shevenell L, Goff F (1993) Addition of magmatic volatiles into the hot spring waters of Loowit Canyon, Mount St. Helens, Washington, USA. Bull Volcanol 35:489–503

    Article  Google Scholar 

  • Shibata T, Akita F, Hirose W, Ikeda R (2008) Hydrological and geochemical changes related to volcanic activity of Usu volcano, Japan. J Volcanol Geotherm Res 173:113–121

    Article  Google Scholar 

  • Stamatis G, Alexakis D, Gamvroula D, Migiros G (2011) Groundwater quality assessment in Oropos–Kalamos basin, Attica, Greece. Environ Earth Sci 64:973–988

    Article  Google Scholar 

  • Swanson S, Bahr JM, Schwar MT, Potter KW (2001) Two-way cluster analysis of geochemical data to constrain spring source waters. Chem Geol 179:73–91

    Article  Google Scholar 

  • Taran Y, Rouwet D, Inguaggiato S, Aiuppa A (2008) Major and trace element geochemistry of neutral and acidic thermal springs at El Chichón volcano, Mexico. J Volcanol Geotherm Res 178:224–236

    Article  Google Scholar 

  • Tassi F, Vaselli O, Capaccioni B, Macias JL, Nencetti A, Montegrossi G, Magro G (2003) Chemical composition of fumarolic gases and spring discharges from El Chichòn volcano, Mexico: causes and implications of the changes detected over the period 1998–2000. J Volcanol Geotherm Res 123:105–121

    Article  Google Scholar 

  • Terroso D (2005) Argilas/lamas e águas termais das Furnas (Açores): avaliação das propriedades físicas e químicas relevantes para a utilização em peloterapia. PhD dissertation, University of Aveiro (in Portuguese with English abstract)

  • Terroso D, Ferreira da Silva E, Patinha C, Rocha F, Forjaz V, Santos A (2006) Hydrogeochemistry of thermal spring and caldera waters in São Miguel Island (Azores, Portugal) and possible applications in Spa treatments. Metal Ions Biol Med 9:78–84

    Google Scholar 

  • Valentino GM, Stanzione D (2003) Source processes of the thermal waters from the Phlegraean Fields (Naples, Italy) by means of the study of selected minor and trace elements distribution. Chem Geol 194:245–274

    Article  Google Scholar 

  • Valentino GM, Stanzione D (2004) Geochemical monitoring of the thermal waters of the Phlegraean Fields. J Volcanol Geotherm Res 133:261–289

    Article  Google Scholar 

  • Varekamp JC, Ouinette A, Herman S, Bermudez A, Delpino D (2001) Hydrothermal elemental fluxes during the 2000 eruptions of Copahue, Argentina. A “beehive volcano in turmoil”. Geology 29:1059–1062

    Article  Google Scholar 

  • Varekamp JC, Ouimette AP, Herman SW, Flynn KS, Bermudez A, Delpino D (2009) Naturally acid waters from Copahue volcano, Argentina. App Geochem 24:208–220

    Article  Google Scholar 

  • Weston FS (1964) List of recorded volcanic eruptions in the Azores with brief reports. Bol Mus Lab Min Geol Fac Ciências Lisboa 10:3–18

    Google Scholar 

  • Zarei M, Raeisi E, Merkel BJ, Kummer N-A (2013) Identifying sources of salinization using hydrochemical and isotopic techniques, Konarsiah, Iran. Environ Earth Sci 70:587–604

    Article  Google Scholar 

Download references

Acknowledgments

P. Freire and F. Viveiros are grateful to Fundo Regional da Ciência (Azores Regional Government) for the funding of projects M3.1.2/F/017/2008 and M3.1.7/F/018/2011, respectively. Authors are grateful for the very valuable suggestions provided by both anonymous reviewers that helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. V. Cruz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, P., Andrade, C., Viveiros, F. et al. Mineral water occurrence and geochemistry in the Azores volcanic archipelago (Portugal): insight from an extended database on water chemistry. Environ Earth Sci 73, 2749–2762 (2015). https://doi.org/10.1007/s12665-014-3157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3157-1

Keywords

Navigation