Skip to main content

Advertisement

Log in

River functional evaluation and regionalization of the Songhua River in Harbin, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Due to the increasingly serious ecological degradation of river systems, research on how to restore damaged river ecosystems has become a high priority. Characterization of river functional regionalization is a prerequisite for adaptive ecological protection and management, which could provide a scientific basis for the river restoration and sustainable use of water resources. In this paper, the Songhua River in Harbin city is selected as a study site. The river functional assessment value is determined both in quality and quantity by the multiple-indices evaluation method. Then, the study area is divided into four parts in the longitudinal direction, consisting of an ecological protection area, a development and utilization area, a transition area, and an ecological restoration area. Furthermore, river regionalization can be established and analyzed in the horizontal, vertical and temporal perspectives to provide a reference for ecological restoration of the Songhua River. This paper proposes measures and contents for the regulation of river functional zoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bailey RG (1983) Delineation of ecosystem regions. Environ Manag 7(4):365–373. doi:10.1007/BF01866919

    Article  Google Scholar 

  • Bailey RG (1976) Ecoregions of the United States. In: Intermountain region map (scale 1:7,500,000; colored). U.S. Department of Agriculture, Forest Service, Ogden, Utah

  • Bian Y, Yang F (2010) Resource and environment efficiency analysis of provinces in China: a DEA approach based on Shannon’s entropy. Energy Policy 38(4):1909–1917. doi:10.1016/j.enpol.2009.11.071

    Article  Google Scholar 

  • Denneman WD, de Pree A, Reininga GAO et al (1995) Environmental aspects of the restoration of river ecosystems in The Netherlands. Water Sci Technol 31:147–150. doi:10.1016/0273-1223(95)00365-T

    Article  Google Scholar 

  • Gao P, Song YS, Yang C (2012) Water Function zoning and water environment capacity analysis on surface water in Jiamusi urban area. Proc Eng 28:458–463. doi:10.1016/j.proeng.2012.01.751

    Article  Google Scholar 

  • Harding JS, Winterbourn MJ (1997) An ecoregion classification of the South Island, New Zealand. J Environ Manag 51:275–287. doi:10.1006/jema.1997.0145

    Article  Google Scholar 

  • Ho W (2008) Integrated analytic hierarchy process and its applications—a literature review. Eur J Oper Res 186:211–228. doi:10.1016/j.ejor.2007.01.004

    Article  Google Scholar 

  • Huang X, Chen YN, Ma JX et al (2011) Research of the sustainable development of Tarim River based on ecosystem service function. Proc Environ Sci 10:239–246. doi:10.1016/j.proenv.2011.09.040

    Article  Google Scholar 

  • Johnson PA, Fecko BJ (2008) Regional channel geometry equations: a statistical comparison for physiographic provinces in the eastern US. River Res Appl 24:823–834. doi:10.1002/rra.1080

    Article  Google Scholar 

  • Karydis M (1996) Quantitative assessment of eutrophication: a scoring system for characterising water quality in coastal marine ecosystems. Environ Monit Assess 41(3):233–246. doi:10.1007/BF00419744

    Article  Google Scholar 

  • Li YM, Zeng WL, Zhou QX (2009) Research progress in water eco-functional regionalization. Chin J Appl Ecol 20:3101–3108 (in Chinese)

    Google Scholar 

  • Ma J, Fan ZP, Huang LH (1999) A subjective and objective integrated approach to determine attribute weights. Eur J Oper Res 112:397–404. doi:10.1016/S0377-2217(98)00141-6

    Article  Google Scholar 

  • Manfré LA, da Silva AM, Urban RC et al (2012) Environmental fragility evaluation and guidelines for environmental zoning: a study case on Ibiuna (the Southeastern Brazilian region). Environ Earth Sci 69:947–957. doi:10.1007/s12665-012-1979-2

    Google Scholar 

  • Marchant R, Wells F, Newall P (2000) Assessment of an ecoregion approach for classifying macroinvertebrates assemblages from streams in Victoria, Australia. J N Am Benthol Soc 19:497–500. doi:10.2307/1468110

    Article  Google Scholar 

  • Miao CY, Yang L, Liu BY et al (2011) Streamflow changes and its influencing factors in the mainstream of the Songhua River basin, Northeast China over the past 50 years. Environ Earth Sci 63:489–499. doi:10.1007/s12665-010-0717-x

    Article  Google Scholar 

  • Nagler PL, Glenn EP, Hinojosa-Huerta O (2009) Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens Environ 113:1473–1485. doi:10.1016/j.rse.2008.06.018

    Article  Google Scholar 

  • Pinto U, Maheshwari BL (2011) River health assessment in peri-urban landscapes: an application of multivariate analysis to identify the key variables. Water Res 45:3915–3924. doi:10.1016/j.watres.2011.04.044

    Article  Google Scholar 

  • Poulard C, Lafont M, Lenar-Matyas A et al (2010) Flood mitigation designs with respect to river ecosystem functions—a problem oriented conceptual approach. Ecol Eng 36:69–77. doi:10.1016/j.ecoleng.2009.09.013

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. Mcgraw-Hill, New York

    Google Scholar 

  • Shannon CE, Weaver W (1947) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shemshadi A, Shirazi H, Toreihi M, Tarokh MJ (2011) A fuzzy VIKOR method for supplier selection based on entropy measure for objective weighting. Exp Syst Appl 38:12160–12167. doi:10.1016/j.eswa.2011.03.027

    Article  Google Scholar 

  • Snelder TH, Biggs BJF (2002) Multiscale river environment classification for water resources management. J Am Water Resour As 38:1225–1239. doi:10.1111/j.1752-1688.2002.tb04344.x

    Article  Google Scholar 

  • Splinter DK, Dauwalter DC, Marston RA (2010) Ecoregions and stream morphology in eastern Oklahoma. Geomorphology 122:117–128. doi:10.1016/j.geomorph.2010.06.004

    Article  Google Scholar 

  • Sun CZ, Chi KX (2008) Establishment and application of the assessment model for water resources safety in Dalian. J Safe Environ 8:115–118 (in Chinese)

    Google Scholar 

  • Vaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169(1):1–29. doi:10.1016/j.ejor.2004.04.028

    Article  Google Scholar 

  • Wan J, Bu H, Zhang Y et al (2012) Classification of rivers based on water quality assessment using factor analysis in Taizi River basin, northeast China. Environ Earth Sci 69:909–919. doi:10.1007/s12665-012-1976-5

    Article  Google Scholar 

  • Wang WD, Guo J, Fang LG, Chang XS (2012) A subjective and objective integrated weighting method for landslides susceptibility mapping based on GIS. Environ Earth Sci 65:1705–1714. doi:10.1007/s12665-011-1148-z

    Article  Google Scholar 

  • Ward JV (1989) The four dimensional nature of lotic ecosystems. J N Am Benthol Soc 8:2–8. doi:10.2307/1467397

    Article  Google Scholar 

  • Wu J, Tang DS (2010) The influence of water conveyances on restoration of vegetation to the lower reaches of Tarim River. Environ Earth Sci 59:967–975. doi:10.1007/s12665-009-0090-9

    Article  Google Scholar 

  • Wu JZ, Zhao GS, Liu JG et al (2011a) River eco-regionalization oriented by ecological restoration. Acta Sci Circum 31:1843–1850 (in Chinese)

    Google Scholar 

  • Wu YX, Wang GX, Wu YN et al (2011b) Method for river functional regionalization and a case study. Adv Water Sci 22:741–749 (in Chinese)

    Google Scholar 

  • Xu SG, Shi RH, Zhao Q (2009) Research on the river function regionalization. Sci China Ser E Tech Sci 52:3030–3037. doi:10.1007/s11431-009-0184-3

    Article  Google Scholar 

  • Zhang X, Xu K, Zhang D (2012) Risk assessment of water resources utilization in Songliao Basin of Northeast China. Environ Earth Sci 67:1319–1329. doi:10.1007/s12665-012-1575-5

    Article  Google Scholar 

  • Zou ZH, Yun Y, Sun JN (2006) Entropy method for determination of weight of evaluating in fuzzy synthetic evaluation for water quality assessment indicators. J Environ Sci 18:1020–1023. doi:10.1016/S1001-0742(06)60032-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No.51279022) and the National Key Basic Research Program (No. 2013CB430403). The authors thank Zhang Shujun and Huang Liqun in China Water International Engineering Consulting Co. Ltd., Guo Qingxue and Wang Jianqi in Bureau of Beaches Development and Management of Harbin for their useful suggestions. The authors also thank the help of the Editor and the comments of the reviewers, whose suggestions have significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuyu Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Liu, Y. & Qiang, P. River functional evaluation and regionalization of the Songhua River in Harbin, China. Environ Earth Sci 71, 3571–3580 (2014). https://doi.org/10.1007/s12665-013-2748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2748-6

Keywords

Navigation