Skip to main content
Log in

Sorption and desorption of mercury(II) in saline and alkaline soils of Bahía Blanca, Argentina

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The objective of this work was to study sorption–desorption and/or precipitation–dissolution processes of Hg(II) compounds considering an eventual contact of soils with Hg-bearing wastes. In addition, this study contributes new data about Hg(II) chemistry in alkaline systems. Saline and alkaline soils with low organic matter (<1 %) and high clay content (60–70 %) were obtained near a chlor-alkali plant. Batch techniques were used to perform the experiments using 0.1 M NaNO3 solutions. Total Hg(II) concentrations ranged from 6.2 × 10−8 to 6.3 × 10−3 M. Sorption of Hg(II) was evaluated at two concentration ranges: (a) 6.2 × 10−8 to 1.1 × 10−4 M, and (b) 6.4 × 10−4 to 6.3 × 10−3 M. At low Hg(II) concentrations, adsorption occurred with a maximum sorption capacity ranging from 4 to 5 mmol/kg. At high Hg(II) concentrations, sorption–precipitation reactions occurred and maximum sorption capacity ranged from 17 to 31 mmol/kg. The distribution of Hg(II) hydrolysis products showed that Hg(OH)2 was the predominant species under soil conditions. According to sorption experiments, X-ray diffraction and chemical speciation modelling, the presence of Hg(OH)2 in the interlayer of the interstratified clay minerals can be proposed. Hg(OH)2 was partially desorbed by repeated equilibrations in 0.1 M NaNO3 solution. Desorption ranged from 0.1 to 0.9 mmol/kg for soils treated with 5.8 × 10−5 M Hg(II), whereas 2.1–3.8 mmol/kg was desorbed from soils treated with 6.3 × 10−3 M Hg(II). Formation of soluble Hg(II) complexes was limited by low organic matter content, whereas neutral Hg(OH)2 was retained by adsorption on clay mineral surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acebal SG, Mijovilovich A, Rueda EH, Aguirre ME, Saragovi C (2000) Iron-oxide mineralogy of a Mollisol from Argentina; a study by selective-dissolution techniques, X-ray diffraction, and Mössbauer spectroscopy. Clays Clay Miner 48:322–330

    Article  Google Scholar 

  • Bäckström M, Dario M, Karlsson S, Allard B (2003) Effects of a fulvic acid on the adsorption of mercury and cadmium on goethite. Sci Total Environ 304:257–268

    Article  Google Scholar 

  • Barrow NJ, Cox VC (2006a) The effects of pH and chloride concentration on mercury sorption. II. By a soil. J Soil Sci 43:305–312. doi:10.1111/j.1365-2389.1992.tb00138.x

    Google Scholar 

  • Barrow NJ, Cox VC (2006b) The effects of pH and chloride concentration on mercury sorption. I. By goethite. J Soil Sci 43:295–304. doi:10.1111/j.1365-2389.1992.tb00137.x

    Google Scholar 

  • Benhammou A, Yaacoubi A, Nibou L, Tanouti B (2005) Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite. J Hazard Mater B117:243–249

    Article  Google Scholar 

  • Biester H, Müller G, Schöler HF (2002) Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. Sci Total Environ 284:191–203

    Article  Google Scholar 

  • Blanco M, Stoops G (2007) Genesis of pedons with discontinuous argillic horizons in the Holocene loess mantle of the southern Pampean landscape, Argentina. J South Am Earth Sci 23:30–45

    Article  Google Scholar 

  • Caló J, Fernández E, Aldacour H (1996) La influencia de la geología y el medioambiente en el deterioro de viviendas en Ingeniero White (Bahía Blanca, Pcia. de Bs. As.). ACTAS Asoc Arg Geol Aplic Ing 10:61–72

    Google Scholar 

  • Chu WS, Wu ZY, Liu WH, Malferrari D, Brigatti MF, Cibin G, Marcelli A (2005) XANES study of Hg sorption products on montmorillonite at high temperatures. High Energy Phys Nucl Phys 29:84–88

    Google Scholar 

  • Cruz-Guzmán M, Celis R, Hermosín MC, Leone P, Nègre M, Cornejo J (2003) Sorption–desorption of lead(II) and mercury(II) by model associations of soil colloids. Soil Sci Soc Am J 67:1378–1387

    Article  Google Scholar 

  • Frenet-Robin M, Ottmann F (1978) Comparative study of the fixation of inorganic mercury on the principal clay minerals and the sediments of the Loire Estuary. Estuar Coast Mar Sci 7:425–436

    Article  Google Scholar 

  • Gabriel MC, Williamson DG (2004) Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ Geochem Health 26:421–434

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. Part 1. Physical and mineralogical methods. American Society of Agronomy and Soil Science Society of America, Madison, pp 399–403

    Google Scholar 

  • Green-Ruiz C (2009) Effect of salinity and temperature on the adsorption of Hg(II) from aqueous solutions by a Ca-montmorillonite. Environ Technol 30(1):63–68

    Article  Google Scholar 

  • Guerra DL, Airoldi C, Ribeiro Viana R (2008) Performance of modified montmorillonite clay in mercury adsorption process and thermodynamic studies. Inorg Chem Commun 11:20–23

    Article  Google Scholar 

  • Guerra DL, Santos MRMC, Airoldi C (2009a) Mercury adsorption on natural and organofunctionalized smectites. Thermodynamics of cation removal. J Braz Chem Soc 20:594–603

    Article  Google Scholar 

  • Guerra DL, Ribeiro Viana R, Airoldi C (2009b) Adsorption of mercury cation on chemically modified clay. Mater Res Bull 44:485–491

    Article  Google Scholar 

  • Hassanien MM, Abou-El-Sherbini KS, Al-Muaikel NS (2010) Immobilization of methylene blue onto bentonite and its application in the extraction of mercury(II). J Hazard Mater 178:94–100

    Article  Google Scholar 

  • Kim C, Brown G Jr, Rytuba J (2000) Mercury(II) sorption to Fe- and Al-(hydr)oxides: pH and ligand-variable systems. J Conf Abs 5:583

    Google Scholar 

  • Kónya J, Nagy NM (2011) Sorption of dissolved mercury(II) species on calcium-montmorillonite: an unusual pH dependence of sorption process. J Radioanal Nucl Chem 288:447–454

    Article  Google Scholar 

  • Lafont D (2009) Identificación y caracterización de contaminantes metálicos y su movilidad geoquímica en el acuífero costero del área industrial de Bahía Blanca. Ph.D. thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina, p 150

  • Li Z, Shuman LM (1996) Heavy metal movement in metal-contaminated soil profiles. Soil Sci 161:656–666

    Article  Google Scholar 

  • Liao L, Selim HM, DeLaune DR (2009) Mercury adsorption–desorption and transport in soils. J Environ Qual 38:1608–1616

    Article  Google Scholar 

  • McBride MB (1994) Environmental chemistry of soils. Oxford University Press, New York

    Google Scholar 

  • McNaughton MG, James RO (1974) Adsorption of aqueous mercury(II) complexes at the oxide/water interface. J Colloid Interface Sci 47:431–440

    Article  Google Scholar 

  • Parker SP (1988) Encyclopedia of the geological sciences. McGraw-Hill, New York

    Google Scholar 

  • Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford

    Google Scholar 

  • Richens DT, Chem C (1997) The chemistry of aqua ions. Wiley, New York

    Google Scholar 

  • Sarkar D, Essington ME, Misra KC (1999) Adsorption of mercury(II) by variable charges surfaces of quartz and gibbsite. Soil Sci Soc Am J 63:1626–1636

    Article  Google Scholar 

  • Sarkar D, Essington ME, Misra KC (2000) Adsorption of mercury(II) by kaolinite. Soil Sci Soc Am J 64:1968–1975

    Article  Google Scholar 

  • Schecher WD, McAvoy DC (1994) MINEQL+: a chemical equilibrium program for personal computers. Version 3.0. Environmental Research Software, Hallowell

    Google Scholar 

  • Somasundaran P, Snell ED, Xu Q (1991) Adsorption behaviour of alkylarylethoxylated alcohols on silica. J Colloid Interface Sci 144:165–173

    Article  Google Scholar 

  • Sonon LS, Thompson ML (2005) Sorption of a nonionic polyoxyethylene lauryl ether surfactant by 2:1 layer silicates. Clays Clay Miner 53:45–54

    Article  Google Scholar 

  • Steinnes E (1990) Mercury. In: Alloway BJ (ed) Heavy metals in soils. Halsted Press, Blackie, pp 222–236

    Google Scholar 

  • Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Spark DL (ed) Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, pp 1201–1229

    Google Scholar 

  • UNEP Chemicals (2002) Global Mercury Assessment Report. 1. Draft. http://www.chem.unep.ch/mercury/report/1stdraft-report-25April.pdf

  • USDA (United Stated Department of Agriculture) (2003) Keys to soil taxonomy, 9th edn. Natural Resources Conservation Service (NRCS), USA

    Google Scholar 

  • USDA (United Stated Department of Agriculture) (2005) National soil survey handbook. Natural Resources Conservation Service (NRCS), USA. http://soils.usda.gov/technical/handbook/

  • Wang X, Andrews L (2005) Infrared spectrum of Hg(OH)2 in solid neon and argon. Inorg Chem 44:108–113

    Article  Google Scholar 

  • Weber JH (1988) Binding and transport of metals by humic materials. In: Frimmel FH, Christman RF (eds) Humic substances and their role in the environment. Wiley, New York, pp 165–178

    Google Scholar 

  • Xu Q, Vasudevan TV, Somasundaran P (1991) Adsorption of anionic–nonanionic and cationic–nonanionic surfactant mixtures on kaolinite. J Colloid Interface Sci 142:528–534

    Article  Google Scholar 

  • Yin Y, Allen HE, Li Y, Huang CP, Sanders PF (1996) Adsorption of mercury(II) by soil: effects of pH, chloride, and organic matter. J Environ Qual 25:837–844

    Article  Google Scholar 

  • Yin Y, Allen HE, Huang CP, Sparks DL, Sanders PF (1997a) Kinetics of mercury(II) adsorption and desorption on soil. Environ Sci Technol 31:496–503

    Article  Google Scholar 

  • Yin Y, Allen HE, Huang CP, Sanders PF (1997b) Adsorption/desorption isotherms of Hg(II) by soil. Soil Sci 162:35–45

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. J.P. Maiza for his helpful comments and Dr. L.I. Vico for technical assistance. Financial support from FONCyT (Fondo para la Investigación Científica y Tecnológica), Argentina (Project No. PICT-1250), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia G. Acebal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lafont, D., Soulages, O.E., Acebal, S.G. et al. Sorption and desorption of mercury(II) in saline and alkaline soils of Bahía Blanca, Argentina. Environ Earth Sci 70, 1379–1387 (2013). https://doi.org/10.1007/s12665-013-2221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2221-6

Keywords

Navigation