Advertisement

Environmental Earth Sciences

, Volume 69, Issue 5, pp 1649–1660 | Cite as

Definition of areas of probable risk to human health posed by As and Pb in soils and ground-level dusts of the surrounding area of an abandoned As-sulfide mine in the north of Portugal: part 1

  • Ioana SantosEmail author
  • Eduardo Ferreira da Silva
  • Carla Patinha
  • Ana Cláudia Dias
  • Amélia Paula Reis
Original Article

Abstract

The aim of this study is to assess the potential health risk posed by As and Pb in the soils of the Pintor mine area. The site was never remediated but a residential area is being constructed in the mine land, next to the smelters, a fact that raised some concern about the probable risk posed by potentially harmful elements in the soil to the health of the residents. 132 samples were collected and analyzed by ICP-MS to determine total metal concentrations. The soluble fraction of As in the soil was obtained using 1 M NH4 Acetate, pH 4.5. To assess the probable risk, total concentrations are compared with the soil guideline value established for the UK. Exposure through soil ingestion is probable in and around the residential area that has higher As and Pb concentrations, and therefore is classified as area with a potential health risk.

Keywords

Soil Potential health risk Soil guideline value Arsenic Lead 

References

  1. Aguado B (1992) Geologia estrutural de la Zona de Cizalla de Porto-Tomar en la región de Oliveira de Azeméis—Serra da Arada (Norte de Portugal). Structural Geology of the Shear Zone Porto-Tomar in the region Oliveira de Azeméis—Serra da Arada (Northern Portugal) (In Spanish). PhD thesis, University of SalamancaGoogle Scholar
  2. Ávila PF, Ferreira da Silva EF, Salgueiro AR, Farinha JA (2008) Geochemistry and mineralogy of Mill tailings impoundments from the Panasqueira mine (Portugal): implications for the surrounding environment. Mine Water Environ 27(4):210–224CrossRefGoogle Scholar
  3. Bacigalupo C, Hale B (2012) Human health risks of Pb and As exposure via consumption of home garden vegetables and incidental soil and dust ingestion: a probabilistic screening tool. Sci Total Environ 423:27–38CrossRefGoogle Scholar
  4. Berglund M, Lind B, Sorensen S, Vahter M (2000) Impact of soil and dust lead on children’s blood lead in contaminated areas of Sweden. Arch Environ Health 55(2):93–97CrossRefGoogle Scholar
  5. Berti WR, Cunningham SD (1997) In-place inactivation of Pb-contaminated soils. Environ Sci Technol 31:1359–1364CrossRefGoogle Scholar
  6. Cohen DR, Shen XC, Dunlop AC, Rutherford NF (1998) A comparison of selective extraction soil geochemistry and biogeochemistry in the Cobar Area, New South Wales. J Geochem Explor 61:173–190CrossRefGoogle Scholar
  7. DEFRA (2002) Soil guideline values for chromium, lead, arsenic, nickel, cadmium and selenium. Environment Agency, BristolGoogle Scholar
  8. Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy and mineral processing. Special issue: geochemical studies of mining and the environment. J Geochem Explor 74(1–3):3–55CrossRefGoogle Scholar
  9. Dong D, Li Y, Zhang B, Hua X, Yue B (2001) Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coatings: application to the study of trace metal adsorption mechanism in aquatic environments. Microchem J 69:89–94CrossRefGoogle Scholar
  10. Ettinger AS, Gurthrie WA (Eds) (2010) Guidelines for the identification and management of lead exposure in pregnant and lactating women. National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/nceh/lead/publications/LeadandPregnancy2010.pdf Accessed 2012 April
  11. FAO-UNESCO (1988) Soil map of the world. Revised legend. World Soil Resources Reports, Rome, vol 60, p 119Google Scholar
  12. Ferreira da Silva E (1995) Geoquímica de elementos maiores e vestigiais em sistemas perturbados. Contribuição para a caracterização ambiental do concelho de Águeda utilizando meios amostrais diferenciados. Geochemistry of major and trace elements in perturbed systems. Contribution for environmental characterization of the council of Águeda using different sampling methods (in Portuguese). PhD thesis, University of Aveiro (in Portuguese)Google Scholar
  13. Fonseca EC, Ferreira da Silva E (1998) Application of selective extraction techniques in metal-bearing phases identification: a South European case study. J Geochem Explor 61:203–212CrossRefGoogle Scholar
  14. Galhano C, Rocha F, Gomes C (1999) Geostatistical analysis of the Influence of textural, mineralogical and geochemical parameters on the geotechnical behavior of the “Clays Aveiro” formation (Portugal). Clay Miner 34:109–116CrossRefGoogle Scholar
  15. Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45CrossRefGoogle Scholar
  16. INE (2001) Estatísticas demográficas 2001. Instituto Nacional de Estatística. http://censos.ine.pt/. Accessed 2010 January
  17. Lanphear BP, Burgoon DA, Rust ST, Ekerly S, Galke W (1998) Environmental exposures to lead and urban children’s blood lead level. Environ Res 76:120–130CrossRefGoogle Scholar
  18. Ljung K, Oomen A, Duits M, Selinus O, Berglund M (2007) Bioaccessibility of metals in urban playground soils. J Environ Sci Health Part A 42:1241–1250CrossRefGoogle Scholar
  19. McGrath D, Zhang C, Carton OT (2004) Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ Poll 127:239–248CrossRefGoogle Scholar
  20. Mellinger RM (1979) Quantitative X-ray diffraction analysis of clay minerals. An evaluation. Saskatchenwan Res. Council, Canada, SRC Report, vol G-79, pp 1–46Google Scholar
  21. Mielke HW, Reagan PL (1999) The urban environment and children’s health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ Res 81(A):117–129CrossRefGoogle Scholar
  22. Moreno F, Ferreira da Silva E, Reis AP, Patinha C, Cardoso da Fonseca E (1997) Impacte Ambiental de uma mina abandonada na qualidade da água superficial: o exemplo da Mina do Pintor. Environmental impact as abandoned mine on surface water quality: the example of the Pintor Mine (in Portuguese). Actas da X Semana de Geoquímica e IV Congresso de Geoquímica dos Países de Língua Portuguesa; Braga, Portugal. pp 479–482 (in Portuguese)Google Scholar
  23. Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California. Proc Natl Acad Sci USA 96:3455–3462Google Scholar
  24. Okorie A, Entwistle J, Dean JR (2012) Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 86:460–467CrossRefGoogle Scholar
  25. Oliveira A, Rocha F, Rodrigues A, Jouanneau J, Dias A, Weber O, Gomes C (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog Oceanogr 52:233–247CrossRefGoogle Scholar
  26. Palumbo-Roe B, Klinck B (2000) Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK). J Environ Sci Heal A 42:1251–1261Google Scholar
  27. Patinha C, Ferreira da Silva E, Cardoso Fonseca E (2004) Mobilisation of arsenic at the Talhadas old mining area—Central Portugal. J Geochem Explor 84:167–180. doi: 10.1016/j.gexplo.2004.08.001 CrossRefGoogle Scholar
  28. Patinha C, Correia E, Ferreira da Silva E, Simões A, Reis AP, Morgado F, Cardoso da Fonseca E (2008) Definition of geochemical patterns on the soil of Paul de Arzila using correspondence analysis. J Geochem Explor 98:34–42. doi: 10.1016/j.gexplo.2007.10.001 CrossRefGoogle Scholar
  29. Paustenbach DJ (2000) The practice of exposure assessment: a state of the art review. J. Toxicol. Environ Health B 3:179–291. doi: 10.1080/10937400050045264 CrossRefGoogle Scholar
  30. Pereira E, Gonçalves LSM, Moreira A (1980) Carta Geológica de Portugal na escala de 1/50000. Notícia Explicativa da Folha 13-D, Oliveira de Azeméis. Explanatory notes of the Geological Map of Portugal at scale 1/50000, sheet 13-D Oliveira de Azeméis (in Portuguese). Serviços Geológicos de Portugal, Lisboa, p 68. (in Portuguese)Google Scholar
  31. Reis AP, Sousa AJ, Fonseca AC (2003) Application of geostatistical methods in gold geochemical anomalies identification (Montemor-O-Novo, Portugal). J Geochem Explor 77(1):45–63CrossRefGoogle Scholar
  32. Reis AP, Sousa AJ, Ferreira da Silva E, Fonseca EC (2005a) Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde–Portugal). Environ Geochem Health 27:259–270. doi: 10.1007/s10653-004-5554-y CrossRefGoogle Scholar
  33. Reis AP, Ferreira da Silva E, Sousa AJ, Matos J, Patinha C, Abenta J, Cardoso Fonseca E (2005b) Combining GIS and Stochastic Simulation to Estimate Spatial Patterns of Variation for Lead at the Lousal Mine. Portugal Land Degrad Develop 16(2):229–242CrossRefGoogle Scholar
  34. Reis AP, Ferreira da Silva E, Sousa AJ, Patinha C, Fonseca EC (2007a) Spatial patterns of dispersion and pollution sources for arsenic at Lousal mine, Portugal. Int J Environ Health Res 17(5):335–349. doi: 10.1080/09603120701628412 CrossRefGoogle Scholar
  35. Reis AP, Menezes de Almeida L, Ferreira da Silva E, Sousa AJ, Patinha C, Fonseca EC (2007b) Assessing the geochemical inherent quality of natural soils for grapevine cultivation using data analysis and geostatistics: the soils from the Douro River basin (Portugal). Geoderma 141:370–383. doi: 10.1016/j.geoderma.2007.07.003 CrossRefGoogle Scholar
  36. Reis AP, Patinha C, Ferreira da Silva E, Sousa AJ, Fig.ueira R, Sérgio C, Novais C (2010) Assessment of human exposure to environmental heavy metals in soils and bryophytes of the central region of Portugal. Int J Environ Health Res 20(2):87–113. doi: 10.1080/09603120903394649 CrossRefGoogle Scholar
  37. Reis AP, Patinha C, Ferreira da Silva E, Sousa AJ (2012a) Metal fractionation of cadmium, lead and arsenic of geogenic origin in topsoils from the Marrancos gold mineralization, northern Portugal. Environ Geochem Health 34:229–241. doi: 10.1007/s10653-011-9433-z CrossRefGoogle Scholar
  38. Reis AP, Ferreira da Silva E, Cardoso Fonseca E, Patinha C, Barrosinho C, Matos J (2012b) Environmental assessment of the Caveira abandoned mine (southern Portugal): Part 1: characterization of metal contaminated soil. Soil Sediment Contam 21:227–254. doi: 10.1080/15320383.2012.649377 CrossRefGoogle Scholar
  39. Ruby MV, Davis A, Link TE, Schoof R, Chaney RL, Freeman GB, Bergstrom P (1993) Development of an in vitro Screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27:2870–2877CrossRefGoogle Scholar
  40. Santos SCF (2002) Município de Oliveira de Azeméis: Azeméis é vida. Paredes (PT) Municipality of Oliveira de Azeméis: Azeméis is life (in Portuguese); Reviver EditoraGoogle Scholar
  41. Schultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale.US Geol. Surv Prof Pap 391-C:1–31Google Scholar
  42. Schütz A, Barregård L, Sällsten G, Wilske J, Manay N, Pereira L, Cousillas ZA (1997) Blood lead in Uruguayan children ad possible sources of exposure. Environ. Res. 74:17–23Google Scholar
  43. Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center Office of Research and Development US. Environmental Protection Agency. http://www.epa.gov/esd/cmb/research/papers/bs116.pdf. Accessed 23 September 2010
  44. Sheppard SC, Evenden WG (1994) Contaminant enrichment and properties of soil adhering to skin. J Environ Qual 23:604–613CrossRefGoogle Scholar
  45. Smith KM, Abrahams PW, Dagleish MP, Steigmajer J (2009) The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: i. Soil ingestion, soil–metal partitioning and potential availability to pasture herbage and livestock. Sci Total Environ 407:3731–3739CrossRefGoogle Scholar
  46. Thorez J (1976) Practical Identification of Clay Minerals. In: Lelotte G (ed) A Handbook for Teachers and Students I Clay Mineralogy. Dison, Belgique, p 90Google Scholar
  47. USEPA (US Environmental Protection Agency) (1984) Health Assessment Document for Inorganic Arsenic. Final Report: EPA/600-8-33-021F. Washington, D.C.: Office of Health and Environmental AssessmentGoogle Scholar
  48. von Schirnding Y, Mathee A, Kibel M, Robertson P, Strauss N, Blignaut R (2003) A study of pediatric blood lead levels in a lead mining area in South Africa. Environ Res 93(3):259–263CrossRefGoogle Scholar
  49. Wragg J, Cave M, Nathanail P (2007) A Study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. J Environ Sci Health 42:1303–1315CrossRefGoogle Scholar
  50. Zhuang P, Zou B, Li NY, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715. doi: 10.1007/s10653-009-9248-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ioana Santos
    • 1
    Email author
  • Eduardo Ferreira da Silva
    • 1
  • Carla Patinha
    • 1
  • Ana Cláudia Dias
    • 1
  • Amélia Paula Reis
    • 1
  1. 1.Department of Geosciences, GeoBiotec-GeoBiosciences, Geotechnologies and GeoengineeringUniversity of Aveiro, AveiroAveiroPortugal

Personalised recommendations