Skip to main content
Log in

Definition of areas of probable risk to human health posed by As and Pb in soils and ground-level dusts of the surrounding area of an abandoned As-sulfide mine in the north of Portugal: part 1

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The aim of this study is to assess the potential health risk posed by As and Pb in the soils of the Pintor mine area. The site was never remediated but a residential area is being constructed in the mine land, next to the smelters, a fact that raised some concern about the probable risk posed by potentially harmful elements in the soil to the health of the residents. 132 samples were collected and analyzed by ICP-MS to determine total metal concentrations. The soluble fraction of As in the soil was obtained using 1 M NH4 Acetate, pH 4.5. To assess the probable risk, total concentrations are compared with the soil guideline value established for the UK. Exposure through soil ingestion is probable in and around the residential area that has higher As and Pb concentrations, and therefore is classified as area with a potential health risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguado B (1992) Geologia estrutural de la Zona de Cizalla de Porto-Tomar en la región de Oliveira de Azeméis—Serra da Arada (Norte de Portugal). Structural Geology of the Shear Zone Porto-Tomar in the region Oliveira de Azeméis—Serra da Arada (Northern Portugal) (In Spanish). PhD thesis, University of Salamanca

  • Ávila PF, Ferreira da Silva EF, Salgueiro AR, Farinha JA (2008) Geochemistry and mineralogy of Mill tailings impoundments from the Panasqueira mine (Portugal): implications for the surrounding environment. Mine Water Environ 27(4):210–224

    Article  Google Scholar 

  • Bacigalupo C, Hale B (2012) Human health risks of Pb and As exposure via consumption of home garden vegetables and incidental soil and dust ingestion: a probabilistic screening tool. Sci Total Environ 423:27–38

    Article  Google Scholar 

  • Berglund M, Lind B, Sorensen S, Vahter M (2000) Impact of soil and dust lead on children’s blood lead in contaminated areas of Sweden. Arch Environ Health 55(2):93–97

    Article  Google Scholar 

  • Berti WR, Cunningham SD (1997) In-place inactivation of Pb-contaminated soils. Environ Sci Technol 31:1359–1364

    Article  Google Scholar 

  • Cohen DR, Shen XC, Dunlop AC, Rutherford NF (1998) A comparison of selective extraction soil geochemistry and biogeochemistry in the Cobar Area, New South Wales. J Geochem Explor 61:173–190

    Article  Google Scholar 

  • DEFRA (2002) Soil guideline values for chromium, lead, arsenic, nickel, cadmium and selenium. Environment Agency, Bristol

    Google Scholar 

  • Dold B, Fontboté L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy and mineral processing. Special issue: geochemical studies of mining and the environment. J Geochem Explor 74(1–3):3–55

    Article  Google Scholar 

  • Dong D, Li Y, Zhang B, Hua X, Yue B (2001) Selective chemical extraction and separation of Mn, Fe oxides and organic material in natural surface coatings: application to the study of trace metal adsorption mechanism in aquatic environments. Microchem J 69:89–94

    Article  Google Scholar 

  • Ettinger AS, Gurthrie WA (Eds) (2010) Guidelines for the identification and management of lead exposure in pregnant and lactating women. National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov/nceh/lead/publications/LeadandPregnancy2010.pdf Accessed 2012 April

  • FAO-UNESCO (1988) Soil map of the world. Revised legend. World Soil Resources Reports, Rome, vol 60, p 119

  • Ferreira da Silva E (1995) Geoquímica de elementos maiores e vestigiais em sistemas perturbados. Contribuição para a caracterização ambiental do concelho de Águeda utilizando meios amostrais diferenciados. Geochemistry of major and trace elements in perturbed systems. Contribution for environmental characterization of the council of Águeda using different sampling methods (in Portuguese). PhD thesis, University of Aveiro (in Portuguese)

  • Fonseca EC, Ferreira da Silva E (1998) Application of selective extraction techniques in metal-bearing phases identification: a South European case study. J Geochem Explor 61:203–212

    Article  Google Scholar 

  • Galhano C, Rocha F, Gomes C (1999) Geostatistical analysis of the Influence of textural, mineralogical and geochemical parameters on the geotechnical behavior of the “Clays Aveiro” formation (Portugal). Clay Miner 34:109–116

    Article  Google Scholar 

  • Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45

    Article  Google Scholar 

  • INE (2001) Estatísticas demográficas 2001. Instituto Nacional de Estatística. http://censos.ine.pt/. Accessed 2010 January

  • Lanphear BP, Burgoon DA, Rust ST, Ekerly S, Galke W (1998) Environmental exposures to lead and urban children’s blood lead level. Environ Res 76:120–130

    Article  Google Scholar 

  • Ljung K, Oomen A, Duits M, Selinus O, Berglund M (2007) Bioaccessibility of metals in urban playground soils. J Environ Sci Health Part A 42:1241–1250

    Article  Google Scholar 

  • McGrath D, Zhang C, Carton OT (2004) Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ Poll 127:239–248

    Article  Google Scholar 

  • Mellinger RM (1979) Quantitative X-ray diffraction analysis of clay minerals. An evaluation. Saskatchenwan Res. Council, Canada, SRC Report, vol G-79, pp 1–46

  • Mielke HW, Reagan PL (1999) The urban environment and children’s health: soils as an integrator of lead, zinc, and cadmium in New Orleans, Louisiana, USA. Environ Res 81(A):117–129

    Article  Google Scholar 

  • Moreno F, Ferreira da Silva E, Reis AP, Patinha C, Cardoso da Fonseca E (1997) Impacte Ambiental de uma mina abandonada na qualidade da água superficial: o exemplo da Mina do Pintor. Environmental impact as abandoned mine on surface water quality: the example of the Pintor Mine (in Portuguese). Actas da X Semana de Geoquímica e IV Congresso de Geoquímica dos Países de Língua Portuguesa; Braga, Portugal. pp 479–482 (in Portuguese)

  • Nordstrom DK, Alpers CN (1999) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the iron mountain superfund site, California. Proc Natl Acad Sci USA 96:3455–3462

    Google Scholar 

  • Okorie A, Entwistle J, Dean JR (2012) Estimation of daily intake of potentially toxic elements from urban street dust and the role of oral bioaccessibility testing. Chemosphere 86:460–467

    Article  Google Scholar 

  • Oliveira A, Rocha F, Rodrigues A, Jouanneau J, Dias A, Weber O, Gomes C (2002) Clay minerals from the sedimentary cover from the Northwest Iberian shelf. Prog Oceanogr 52:233–247

    Article  Google Scholar 

  • Palumbo-Roe B, Klinck B (2000) Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK). J Environ Sci Heal A 42:1251–1261

    Google Scholar 

  • Patinha C, Ferreira da Silva E, Cardoso Fonseca E (2004) Mobilisation of arsenic at the Talhadas old mining area—Central Portugal. J Geochem Explor 84:167–180. doi:10.1016/j.gexplo.2004.08.001

    Article  Google Scholar 

  • Patinha C, Correia E, Ferreira da Silva E, Simões A, Reis AP, Morgado F, Cardoso da Fonseca E (2008) Definition of geochemical patterns on the soil of Paul de Arzila using correspondence analysis. J Geochem Explor 98:34–42. doi:10.1016/j.gexplo.2007.10.001

    Article  Google Scholar 

  • Paustenbach DJ (2000) The practice of exposure assessment: a state of the art review. J. Toxicol. Environ Health B 3:179–291. doi:10.1080/10937400050045264

    Article  Google Scholar 

  • Pereira E, Gonçalves LSM, Moreira A (1980) Carta Geológica de Portugal na escala de 1/50000. Notícia Explicativa da Folha 13-D, Oliveira de Azeméis. Explanatory notes of the Geological Map of Portugal at scale 1/50000, sheet 13-D Oliveira de Azeméis (in Portuguese). Serviços Geológicos de Portugal, Lisboa, p 68. (in Portuguese)

  • Reis AP, Sousa AJ, Fonseca AC (2003) Application of geostatistical methods in gold geochemical anomalies identification (Montemor-O-Novo, Portugal). J Geochem Explor 77(1):45–63

    Article  Google Scholar 

  • Reis AP, Sousa AJ, Ferreira da Silva E, Fonseca EC (2005a) Application of geostatistical methods to arsenic data from soil samples of the Cova dos Mouros mine (Vila Verde–Portugal). Environ Geochem Health 27:259–270. doi:10.1007/s10653-004-5554-y

    Article  Google Scholar 

  • Reis AP, Ferreira da Silva E, Sousa AJ, Matos J, Patinha C, Abenta J, Cardoso Fonseca E (2005b) Combining GIS and Stochastic Simulation to Estimate Spatial Patterns of Variation for Lead at the Lousal Mine. Portugal Land Degrad Develop 16(2):229–242

    Article  Google Scholar 

  • Reis AP, Ferreira da Silva E, Sousa AJ, Patinha C, Fonseca EC (2007a) Spatial patterns of dispersion and pollution sources for arsenic at Lousal mine, Portugal. Int J Environ Health Res 17(5):335–349. doi:10.1080/09603120701628412

    Article  Google Scholar 

  • Reis AP, Menezes de Almeida L, Ferreira da Silva E, Sousa AJ, Patinha C, Fonseca EC (2007b) Assessing the geochemical inherent quality of natural soils for grapevine cultivation using data analysis and geostatistics: the soils from the Douro River basin (Portugal). Geoderma 141:370–383. doi:10.1016/j.geoderma.2007.07.003

    Article  Google Scholar 

  • Reis AP, Patinha C, Ferreira da Silva E, Sousa AJ, Fig.ueira R, Sérgio C, Novais C (2010) Assessment of human exposure to environmental heavy metals in soils and bryophytes of the central region of Portugal. Int J Environ Health Res 20(2):87–113. doi:10.1080/09603120903394649

    Article  Google Scholar 

  • Reis AP, Patinha C, Ferreira da Silva E, Sousa AJ (2012a) Metal fractionation of cadmium, lead and arsenic of geogenic origin in topsoils from the Marrancos gold mineralization, northern Portugal. Environ Geochem Health 34:229–241. doi:10.1007/s10653-011-9433-z

    Article  Google Scholar 

  • Reis AP, Ferreira da Silva E, Cardoso Fonseca E, Patinha C, Barrosinho C, Matos J (2012b) Environmental assessment of the Caveira abandoned mine (southern Portugal): Part 1: characterization of metal contaminated soil. Soil Sediment Contam 21:227–254. doi:10.1080/15320383.2012.649377

    Article  Google Scholar 

  • Ruby MV, Davis A, Link TE, Schoof R, Chaney RL, Freeman GB, Bergstrom P (1993) Development of an in vitro Screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environ Sci Technol 27:2870–2877

    Article  Google Scholar 

  • Santos SCF (2002) Município de Oliveira de Azeméis: Azeméis é vida. Paredes (PT) Municipality of Oliveira de Azeméis: Azeméis is life (in Portuguese); Reviver Editora

  • Schultz LG (1964) Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale.US Geol. Surv Prof Pap 391-C:1–31

  • Schütz A, Barregård L, Sällsten G, Wilske J, Manay N, Pereira L, Cousillas ZA (1997) Blood lead in Uruguayan children ad possible sources of exposure. Environ. Res. 74:17–23

    Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecological Risk Assessment Support Center Office of Research and Development US. Environmental Protection Agency. http://www.epa.gov/esd/cmb/research/papers/bs116.pdf. Accessed 23 September 2010

  • Sheppard SC, Evenden WG (1994) Contaminant enrichment and properties of soil adhering to skin. J Environ Qual 23:604–613

    Article  Google Scholar 

  • Smith KM, Abrahams PW, Dagleish MP, Steigmajer J (2009) The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: i. Soil ingestion, soil–metal partitioning and potential availability to pasture herbage and livestock. Sci Total Environ 407:3731–3739

    Article  Google Scholar 

  • Thorez J (1976) Practical Identification of Clay Minerals. In: Lelotte G (ed) A Handbook for Teachers and Students I Clay Mineralogy. Dison, Belgique, p 90

    Google Scholar 

  • USEPA (US Environmental Protection Agency) (1984) Health Assessment Document for Inorganic Arsenic. Final Report: EPA/600-8-33-021F. Washington, D.C.: Office of Health and Environmental Assessment

  • von Schirnding Y, Mathee A, Kibel M, Robertson P, Strauss N, Blignaut R (2003) A study of pediatric blood lead levels in a lead mining area in South Africa. Environ Res 93(3):259–263

    Article  Google Scholar 

  • Wragg J, Cave M, Nathanail P (2007) A Study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. J Environ Sci Health 42:1303–1315

    Article  Google Scholar 

  • Zhuang P, Zou B, Li NY, Li ZA (2009) Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: implication for human health. Environ Geochem Health 31:707–715. doi:10.1007/s10653-009-9248-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioana Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, I., Ferreira da Silva, E., Patinha, C. et al. Definition of areas of probable risk to human health posed by As and Pb in soils and ground-level dusts of the surrounding area of an abandoned As-sulfide mine in the north of Portugal: part 1. Environ Earth Sci 69, 1649–1660 (2013). https://doi.org/10.1007/s12665-012-2000-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-2000-9

Keywords

Navigation