Skip to main content
Log in

The application of GPR and electrical resistivity tomography as useful tools in detection of sinkholes in the Cheria Basin (northeast of Algeria)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Sinkhole collapse is one of the main limitations in the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Ground-penetrating radar (GPR) and electrical resistivity imaging or tomography (RESTOM) are well suited to mapping sinkholes because of the ability of these two techniques for detecting voids and discriminating subtle resistivity variations. Nine GPR profiles and two-dimensional electrical resistivity tomography have been applied, with relative success, to locate paleo-collapses and cavities, and to detect and characterize karst at two sinkhole sites near Cheria City where limestone is covered by about 10 m of clayey soils. The survey results suggest that GPR and RESTOM are ideal geophysical tools to aid in the detection and monitoring of sinkholes and other subsurface cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Amoush and Abou Karaki (1997) Practical quantification of the anisotropy factor in electrical resistivity measurements. Application on water exploration in Jordan, MSc. Thesis, University of Jordan

  • Al-fares W, Bakalowicz M, Gue′rin R, Dukhan M (2002) Analysis of the karst aquifer structure of the Lamalou area (He′rault, France) with ground penetrating radar. J Appl Geophys 51:97–106

    Article  Google Scholar 

  • Annan AP (2003) Ground penetrating radar: principles, procedures and applications. Sensors & Software Inc, Mississauga, p 271

    Google Scholar 

  • Annan AP, Cosway SW, Redman JD (1991) Water table detectionwith ground-penetrating radar. In: Soc. Explor. Geophys. Annual International Meeting Program with Abstracts, pp 494–497

  • Baali F (2001) Eude hydrogéologique hydrochimique de la région karstique de Chéria N-E Algérien. Magister Univ Annaba Algérie, 100 pp

  • Baali F (2007) Approche hydrogéologique et hydrochimique d’une région karstique semi-aride cas de la plaine de Chéria N-E Algérien. Thése de Doctorat. Univ Annaba Algérie, 140 pp

  • Baali F, Rouabhia A, Kherici N, Djabri L, Bouchaou L, Hani A (2007) Qualité des eaux souterraines et risque de pollution en milieu semi aride. Cas de la cuvette de Chéria. NE algérien. J Estudios Geologicos 63:127–133

    Google Scholar 

  • Ballard RF (1983) Cavity detection and delineation research. Report 5, Electromagnetic (radar) techniques applied to cavity detection. Technical Report GL, 83–1, pp 90

  • Barker R, Moore J (1998) The application of time-lapse electrical tomography in groundwater studies. Lead Edge 17(10):1454–1458

    Article  Google Scholar 

  • Beck BF (1991) On calculating the risk of sinkhole collapse. In: Kastning EH, Kastning KM (eds) Proc Appalachian Karst Symp, Radford, Virginia, 23–26 March 1991. National Speleological Society, Huntsville, pp 231–236

    Google Scholar 

  • Benson RC, Kaufmann RD, Yuhr LB, Martin D (1998) Assessment, prediction and remediation of karst conditions on I-70, Frederick, Maryland, 49th Highway Geology Symposium, Precott, Arizona, Sept. 10–14, 1998. Arizona Department of Transportation, Material Group, Arizona Geological Survey, pp 313–325

  • Bishop I, Styles P, Emsley SJ, Ferguson NS (1997) The detection of cavities using the microgravity technique: case histories from mining and karstic environments. Geol Soc Eng Geol Spec Publ 12:153–166

    Google Scholar 

  • Burger HR (1992) Exploration geophysics of the shallow subsurface. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Butler DK (1984) Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49(7):1084–1096

    Article  Google Scholar 

  • Chaffai H, Baali F, Djabri L, Rouabhia Aek (2003) Facteurs influençant le chimisme des eaux dans une zone semi-aride: Cas des aquifères d’El Ma El Abiod, Tébessa, Hammamet et Chéria. ICOWAP-Sep 2003. Colloque Oasis, Eau et population, Biskra Algérie, pp 339–344

  • Colley GC (1963) The detection of caves by gravity measurements. Geophys Prospect XI:1–9

    Google Scholar 

  • Collins ME, Puckett WE, Schellentrager GW, Yust NA (1990) Using GPR for micro-analyses of soils and karst features on the Chiefland Limestone Plain in Florida. Geoderma 47:159–170

    Article  Google Scholar 

  • Collins ME, Cum M, Hanninen P (1994) Using ground-penetrating radar to investigate a subsurface karst landscape in north-central Florida. Geoderma 61:1–15

    Article  Google Scholar 

  • Cook JC (1965) Seismic mapping of underground cavities using reflection amplitudes. Geophysics 30(4):527–538

    Article  Google Scholar 

  • Cook KL, Van Nostrand RG (1954) Interpretation of resistivity data over filled sinks. Geophys Prospect 21:716–723

    Google Scholar 

  • Davis JL, Annan AP (1989) Ground penetrating radar for high resolution mapping of soil and rock stratigraphy. Geophys Prospect 37:531–551

    Article  Google Scholar 

  • Doolittle JA, Collins ME (1998) A comparison of EM induction and GPR methods in areas of karst. Geoderma 85:83–102

    Article  Google Scholar 

  • Fehdi Ch, Baali F, Boubaya D, Rouabhia A (2011) Detection of sinkholes using 2D electrical resistivity imaging in the Cheria Basin (north-east of Algeria). Arab J Geosci 4:181–187

    Article  Google Scholar 

  • Gaud J (1977) Etude géologique et hydrogéologique du plateau de Chéria Wilaya de Tébessa. Rapport interne No. 2. A.N.R.H de Tébessa. Agence Nationale des ressources hydriques, 96 pp

  • Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modeling in areas of complex geology. J Appl Geophys 29:211–226

    Article  Google Scholar 

  • Gutierrez F, Galve JP, Lucha P, Bonachea J, Jorda L, Jorda R (2009) Investigation of a large collapse sinkhole affecting a multi-storey building by means of geophysics and the trenching technique (Zaragoza city, NE Spain). Environ Geol 58:1107–1122

    Article  Google Scholar 

  • Knight RJ, Nur A (1987) The dielectric constant of sandstones, 60 Khz to 4 Mhz. Geophysics 52:644–654

    Article  Google Scholar 

  • La Moreaux PE, Wilson BM, Memon BA (1984) Guide to the hydrology of carbonate rocks. UNESCO, France

    Google Scholar 

  • Mathé V, Léveque F, Mathé PE, Chevallier C, Pons Y (2006) Soil anomaly mapping using a caesium magnetometer: limits in the low magnetic amplitude case. J Appl Geophys 58:202–217

    Article  Google Scholar 

  • McMechan GA, Loucks RG, Zeng Xiaoxian, Mescher P (1998) Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. J Appl Geophys 39:1–10

    Article  Google Scholar 

  • Neal A, Pontee NI, Pye K, Richards J (2002) Internal structure of mixed-sand-and-gravel beach deposits revealed using ground penetrating radar. Sedimentology 49:789–804

    Article  Google Scholar 

  • Pueyo Anchuela R, Casas-Sainz AM, Soriano MA, Pocovı-Juan A (2009) Mapping subsurface karst features with GPR: results and limitations. Environ Geol 58:391–399

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and environmental geophysics. Wiley, Chichester

    Google Scholar 

  • Rybakov M, Goldshmidt V, Fleischer L, Rotstein Y (2001) Cave detection and 4-D monitoring: a microgravity case history near the Dead Sea. Lead Edge (Soc Explor Geophys) 20(8):896–900

    Article  Google Scholar 

  • Rybakov M, Rotstein Y, Shirman B, Al-Zoubi A (2005) Cave detection near the Dead Sea—a micromagnetic feasibility study. Lead Edge (Soc Explor Geophys) 24(6):585–590

    Article  Google Scholar 

  • Sasaki Y, Matsuo K (1993) Surface-to-tunnel resistivity tomography at the Kamaishi Mine. Butsuri-Tansa 46:128–133

    Google Scholar 

  • Spies B, Ellis R (1995) Cross-borehole resistivity tomography of a pilot sale, in situ vitrification test. Geophysics 60:886–898

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Van Schoor M, Duvenhage D (2000) Comparison of crosshole radio imaging and electrical resistivity tomography for mapping out disseminated sulphide mineralisation at a surface test site in Mpumalanga, South Africa. Explor Geophys 30:3–4

    Google Scholar 

  • Vila JM (1980) La chaîne alpine de l’Algérie orientale et des confins Algéro-Tunisiens. Thèse de Doctorat- es-sciences, Université Pierre et Marie curie, Paris VI

  • Zhou W, Beck BF, Adams AL (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environ Geol 42:922–928

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nouioua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nouioua, I., Rouabhia, A., Fehdi, C. et al. The application of GPR and electrical resistivity tomography as useful tools in detection of sinkholes in the Cheria Basin (northeast of Algeria). Environ Earth Sci 68, 1661–1672 (2013). https://doi.org/10.1007/s12665-012-1859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1859-9

Keywords

Navigation