Skip to main content
Log in

Heptagonal Reinforcement Learning (HRL): a novel algorithm for early prevention of non-sinus cardiac arrhythmia

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

There have been many connections between medical science and artificial intelligence in recent years. Many problems arise with the integrity of communication. Cardiac arrhythmia, carried out using artificial intelligence methods, is one of the most dangerous diseases in the field of prevention. Topics introduced in artificial intelligence are the automatic selection of balancing and classification algorithms. In this study, metrics for machine learning algorithm selection are presented. The first problem is the problem of choosing the best balancing algorithm to balance the data sets, introduced as triangle rate (TR). The second issue to be studied is selecting the best automatic classification algorithm. The third action was to use a scoring algorithm to predict sinus and non-sinus arrhythmias. The heptagonal reinforcement learning (HRL) achieved results competitive with standard algorithms by combining three types of algorithms. The data used in this study was a 12-lead electrocardiogram (ECG) database of arrhythmias. The number of patients examined in this dataset is 10,646. The HRL algorithm has improved the previous algorithms by 5%, achieving 86% cardiac arrhythmia prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The dataset used in this research is available in the link below and free access is available for all researchers. Data Info.

References

  • Aggarwal R, Podder P, Khamparia A (2022) Biomedical data analysis and processing using explainable (XAI) and responsive artificial intelligence (RAI). Springer, Berlin, pp 91–103

    Book  Google Scholar 

  • Akca T, Uysal F, Bostan OM, Genc A, Turkmen H (2022) The role of external loop recorders in arrhythmia-related symptoms in children: a single center experience. Pediatr Cardiol 43:147–154

    Article  Google Scholar 

  • Ali J, Chandra Das B, Saha S, Biswas AA, Chakraborty P (2022) Machine intelligence and data science applications. Springer, Berlin, pp 573–586

    Google Scholar 

  • Alimoradi M, Zabihimayvan M, Daliri A, Sledzik R, Sadeghi R (2022) Deep neural classification of darknet traffic. In: Cortés A, Grimaldo F, Flaminio T (eds) Frontiers in artificial intelligence and applications. IOS Press, Amsterdam

    Google Scholar 

  • Altmann A, Toloşi L, Sander O, Lengauer T (2010) Permutation importance: a corrected feature importance measure. Bioinformatics 26:1340–1347

    Article  Google Scholar 

  • Anand A, Kadian T, Shetty MK, Gupta A (2022) Explainable AI decision model for ECG data of cardiac disorders. Biomed Signal Process Control 75:103584

    Article  Google Scholar 

  • Assi L, Karam ES, Swenor BK, Deal JA, Willink A, Reed NS (2022) Association of sensory loss with the knowledge of heart attacks. Am J Prev Med 62:265–269

    Article  Google Scholar 

  • Bansal P, Gehlot K, Singhal A, Gupta A (2022) Automatic detection of osteosarcoma based on integrated features and feature selection using binary arithmetic optimization algorithm. Multimed Tools Appl 81:8807–8834

    Article  Google Scholar 

  • Bej S, Davtyan N, Wolfien M, Nassar M, Wolkenhauer O (2021) LoRAS: an oversampling approach for imbalanced datasets. Mach Learn 110:279–301. https://doi.org/10.1007/s10994-020-05913-4

    Article  MathSciNet  Google Scholar 

  • Bennett PB, Yazawa K, Makita N, George AL (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685

    Article  Google Scholar 

  • Besse P, del Barrio E, Gordaliza P, Loubes J-M, Risser L (2022) A survey of bias in machine learning through the prism of statistical parity. Am Stat 76:188–198

    Article  MathSciNet  Google Scholar 

  • Biau G, Scornet E (2016) A random forest guided tour. TEST 25:197–227

    Article  MathSciNet  Google Scholar 

  • Bountakas P, Zarras A, Lekidis A, Xenakis C (2023) Defense strategies for adversarial machine learning: a survey. Comput Sci Rev 49:100573

    Article  MathSciNet  Google Scholar 

  • Buja LM, Schoen FJ (2022) Cardiovascular pathology. Elsevier, Amsterdam, pp 761–798

    Book  Google Scholar 

  • Caliński T, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat-Theory Methods 3:1–27

    Article  MathSciNet  Google Scholar 

  • Cao Q, Wang S (2011) Applying over-sampling technique based on data density and cost-sensitive SVM to imbalanced learning. In: 2011 international conference on information management, innovation management and industrial engineering. IEEE, pp. 543–548

  • Chaffin M, Papangeli I, Simonson B, Akkad A-D, Hill MC, Arduini A, Fleming SJ, Melanson M, Hayat S, Kost-Alimova M (2022) Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608:174–180

    Article  Google Scholar 

  • Charbuty B, Abdulazeez A (2021) Classification based on decision tree algorithm for machine learning. J Appl Sci Technol Trends 2:20–28

    Article  Google Scholar 

  • Chawla NV (2009) Data mining for imbalanced datasets: an overview. Data mining and knowledge discovery handbook, Springer, Berlin, pp 875–886

    Google Scholar 

  • Chen P-H, Lin C-J, Schölkopf B (2005) A tutorial on ν-support vector machines. Appl Stoch Models Bus Ind 21:111–136

    Article  MathSciNet  Google Scholar 

  • Daliri A, Asghari A, Azgomi H, Alimoradi M (2022) The water optimization algorithm: a novel metaheuristic for solving optimization problems. Appl Intell 52:17990–18029. https://doi.org/10.1007/s10489-022-03397-4

    Article  Google Scholar 

  • Daliri A, Alimoradi M, Zabihimayvan M, Sadeghi R (2024) World hyper-heuristic: a novel reinforcement learning approach for dynamic exploration and exploitation. Expert Syst Appl 244:122931

    Article  Google Scholar 

  • Das A, Mondal U (2022) A study on the development and deployment of IoT based remote health monitoring system utilizing ECG signal. In: proceedings of international conference on industrial instrumentation and control. Springer, pp. 617–623

  • Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.1979.4766909

    Article  Google Scholar 

  • de Morais RF, Vasconcelos GC (2019) Boosting the performance of over-sampling algorithms through under-sampling the minority class. Neurocomputing 343:3–18

    Article  Google Scholar 

  • Dorfman AL, Geva T, Samyn MM, Greil G, Krishnamurthy R, Messroghli D, Festa P, Secinaro A, Soriano B, Taylor A (2022) SCMR expert consensus statement for cardiovascular magnetic resonance of acquired and non-structural pediatric heart disease. J Cardiovasc Magn Reson 24:1–32

    Article  Google Scholar 

  • Douzas G, Bacao F, Last F (2018) Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf Sci 465:1–20

    Article  Google Scholar 

  • El Majzoub A, Rabhi FA, Hussain W (2023) Evaluating interpretable machine learning predictions for cryptocurrencies. Intell Syst Account Finance Manag 30:137–149. https://doi.org/10.1002/isaf.1538

    Article  Google Scholar 

  • Ezugwu AE, Ikotun AM, Oyelade OO, Abualigah L, Agushaka JO, Eke CI, Akinyelu AA (2022) A comprehensive survey of clustering algorithms: state-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Eng Appl Artif Intell 110:104743

    Article  Google Scholar 

  • Fattovich G, Giustina G, Favarato S, Ruol A (1996) A survey of adverse events in 11 241 patients with chronic viral hepatitis treated with alfa interferon. J Hepatol 24:38–47

    Article  Google Scholar 

  • Fayaz SA, Zaman M, Butt MA (2022) Knowledge discovery in geographical sciences—a systematic survey of various machine learning algorithms for rainfall prediction. In: international conference on innovative computing and communications. Springer, pp. 593–608

  • Filipovic N, Sustersic T, Milosevic M, Milicevic B, Simic V, Prodanovic M, Mijailovic S, Kojic M (2022) SILICOFCM platform, multiscale modeling of left ventricle from echocardiographic images and drug influence for cardiomyopathy disease. Comput Methods Programs Biomed 227:107194

    Article  Google Scholar 

  • Fukuoka Y, Oh YJ (2022) Perceived heart attack likelihood in adults with a high diabetes risk. Heart Lung 52:42–47

    Article  Google Scholar 

  • Guan Y, An Y, Xu J, Liu N, Wang J (2022) HA-RESNET: residual neural network with hidden attention for ECG arrhythmia detection using two-dimensional signal. IEEE/ACM Trans Comput Biol Bioinform. https://doi.org/10.1109/TCBB.2022.3198998

    Article  Google Scholar 

  • Guo J, Chen Y, Dai Y, Chen Q, Wang X (2022) Influencing factors of care dependence in patients with coronary heart disease after percutaneous coronary intervention—A cross-sectional study. Nurs Open 10:241–251

    Article  Google Scholar 

  • Gupta A, Banerjee A, Babaria D, Lotlikar K, Raut H (2022) Sentimental analysis and deep learning. Springer, Berlin, pp 527–538

    Book  Google Scholar 

  • Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering validation techniques. J Intell Inf Syst 17:107–145

    Article  Google Scholar 

  • Hamza S, Ayed YB (2022) An integration of features for person identification based on the PQRST fragments of ECG signals. Signal Image Video Process. 6:1–7

    Google Scholar 

  • Houssein EH, Hassaballah M, Ibrahim IE, AbdElminaam DS, Wazery YM (2022) An automatic arrhythmia classification model based on improved marine predators algorithm and convolutions neural networks. Expert Syst Appl 187:115936

    Article  Google Scholar 

  • Huang W, Ying TW, Chin WLC, Baskaran L, Marcus OEH, Yeo KK, Kiong NS (2022) Application of ensemble machine learning algorithms on lifestyle factors and wearables for cardiovascular risk prediction. Sci Rep 12:1–12

    Google Scholar 

  • Jayanthi G, Brindha S, Umamaheswari B, Gayathri R, Vishalakshi M (2022) Smart heart health monitoring system using IoT. In: 2022 international conference on communication, computing and internet of things (IC3IoT). IEEE, pp. 1–6

  • Jiang L, Zhang H, Cai Z (2008) A novel bayes model: hidden naive bayes. IEEE Trans Knowl Data Eng 21:1361–1371

    Article  Google Scholar 

  • Juhola M, Joutsijoki H, Penttinen K, Shah D, Pölönen R-P, Aalto-Setälä K (2022) Data analytics for cardiac diseases. Comput Biol Med 142:105218

    Article  Google Scholar 

  • Kaczkurkin AN, Foa EB (2022) Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci 17(3):337–346

    Article  Google Scholar 

  • Kamga P, Mostafa R, Zafar S (2022) The use of wearable ECG devices in the clinical setting: a review. Curr Emerg Hosp Med Rep 17:1–6

    Google Scholar 

  • Kapuku GK, Kop WJ (2022) Classification of cardiovascular diseases: epidemiology, diagnosis, and treatment. Handb Cardiovasc Behav Med. https://doi.org/10.1007/978-0-387-85960-6_3

    Article  Google Scholar 

  • Karimi A, Zarafshan F, Al-Haddad SAR, Ramli AR (2014) A novel-input voting algorithm for-by-wire fault-tolerant systems. Sci World J. https://doi.org/10.1155/2014/672832

    Article  Google Scholar 

  • Ketu S, Mishra PK (2022) Empirical analysis of machine learning algorithms on imbalance electrocardiogram based arrhythmia dataset for heart disease detection. Arab J Sci Eng 47:1447–1469

    Article  Google Scholar 

  • Khan MG (2005) Encyclopedia of heart diseases. Elsevier

    Google Scholar 

  • Kida K, Miyajima I, Suzuki N, Greenberg BH, Akashi YJ (2022) Nutritional management of heart failure. J Cardiol 81:283–291

    Article  Google Scholar 

  • Kigo SN, Omondi EO, Omolo BO (2023) Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Sci Rep 13:17315

    Article  Google Scholar 

  • Kolekar MH, Jha CK, Kumar P (2022) ECG data compression using modified run length encoding of wavelet coefficients for holter monitoring. IRBM 43:325–332

    Article  Google Scholar 

  • Köstler L, Ossewaarde R (2022) The making of AI society: AI futures frames in German political and media discourses. AI Soc 37:249–263

    Article  Google Scholar 

  • Koziarski M, Woźniak M (2017) CCR: a combined cleaning and resampling algorithm for imbalanced data classification. Int J Appl Math Comput Sci 27:727–736

    Article  MathSciNet  Google Scholar 

  • Król-Józaga B (2022) Atrial fibrillation detection using convolutional neural networks on 2-dimensional representation of ECG signal. Biomed Signal Process Control 74:103470

    Article  Google Scholar 

  • Kumar A, Goel S, Sinha N, Bhardwaj A (2022) A review on unbalanced data classification. In: proceedings of international joint conference on advances in computational intelligence. Springer, pp. 197–208

  • Kumar LV, Sai YP (2022) A new transfer learning approach to detect cardiac arrhythmia from ECG signals. Signal Image Video Process. 16:1–9

    Google Scholar 

  • Laish-Farkash A, Sevilya Z, Brezinov OP, Fortis L, Lev E (2022) Inflammatory cytokines differ between patients with high versus low CHA2DS2-VASc scores in sinus rhythm-a possible mechanism for adverse cardiovascular events. Int J Cardiol Cardiovasc Risk Prev 15:200155

    Google Scholar 

  • Le D, Truong S, Brijesh P, Adjeroh D, Le N (2023) sCL-ST: supervised contrastive learning with semantic transformations for multiple lead ECG arrhythmia classification. IEEE J Biomed Health Inform. https://doi.org/10.1109/JBHI.2023.3246241

    Article  Google Scholar 

  • Libby P, Theroux P (2005) Pathophysiology of coronary artery disease. Circulation 111:3481–3488

    Article  Google Scholar 

  • Lin S, Ma Z, Huang Y, Sun Y, Yi H (2022) Chronic obstructive pulmonary disease is characterized by reduced levels and defective suppressive function of regulatory B cells in peripheral blood. Mol Immunol 141:87–93

    Article  Google Scholar 

  • Mantha Y, Ebin J, Krishnakumar H, Menon S, Pillarisetti J, Seifi A (2022) “Forced inspiratory suction and swallow tool” a novel instrument to convert paroxysmal supraventricular tachycardia (SVT) to sinus rhythm, a case report and introduction of the device. Am J Emerg Med 62:146-e3

    Article  Google Scholar 

  • Maruyama M, Yamabe H, Takatsuki S, Seki Y, Uetake S, Nohara T, Tsuboi I, Ishihara S, Miyauchi Y, Shimizu W (2022) Last entrainment sequence: a novel diagnostic technique for atrial tachycardia mimicking other supraventricular tachycardias. JACC Clin Electrophysiol 8:1289–1300

    Article  Google Scholar 

  • Mavrides N, Nemeroff CB (2022) Treatment of affective disorders in cardiac disease. Dialogues Clin Neurosci 17:127–40

    Article  Google Scholar 

  • Merdjanovska E, Rashkovska A (2023) A framework for comparative study of databases and computational methods for arrhythmia detection from single-lead ECG. Sci Rep 13:11682

    Article  Google Scholar 

  • Minette MS, Sahn DJ (2006) Ventricular septal defects. Circulation 114:2190–2197

    Article  Google Scholar 

  • Nahak S, Pathak A, Saha G (2023) Evaluation of handcrafted features and learned representations for the classification of arrhythmia and congestive heart failure in ECG. Biomed Signal Process Control 79:104230

    Article  Google Scholar 

  • Najjar A, Allami A, Dodangeh S, Daei MM (2022) The effect of coronavirus infection on QT and QTc intervals of hospitalized patients in Qazvin, Iran. Ann Data Sci. https://doi.org/10.1007/s40745-022-00425-5

    Article  Google Scholar 

  • O’Shea C, Winter J, Kabir SN, O’Reilly M, Wells SP, Baines O, Sommerfeld LC, Correia J, Lei M, Kirchhof P (2022) High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci Data 9:1–12

    Article  Google Scholar 

  • Panç C, Güler A, Doğan AC, Gülmez R, Güner A, Çelik Ö (2022) Fragmented QRS complex may predict long-term mortality after isolated surgical aortic valve replacement in patients with severe aortic stenosis. Interact Cardiovasc Thorac Surg 34:26–32

    Article  Google Scholar 

  • Pargent F, Pfisterer F, Thomas J, Bischl B (2022) Regularized target encoding outperforms traditional methods in supervised machine learning with high cardinality features. Comput Stat 37:1–22

    Article  MathSciNet  Google Scholar 

  • Patel NH, Rutland J, Tecson KM (2022) Arrhythmias and intraventricular conduction disturbances in patients hospitalized with coronavirus disease 2019. Am J Cardiol 162:111–115

    Article  Google Scholar 

  • Pears R, Finlay J, Connor AM (2014) Synthetic Minority over-sampling technique (SMOTE) for predicting software build outcomes. ArXiv Prepr. https://doi.org/10.48550/arXiv.1407.2330

    Article  Google Scholar 

  • Pichler M, Hartig F (2023) Machine learning and deep learning—a review for ecologists. Methods Ecol Evol 14:994–1016. https://doi.org/10.1111/2041-210X.14061

    Article  Google Scholar 

  • Przybylski R, Craig M, Lippmann M, Mah DY, Shafer KM, Gauthier NS, de Ferranti SD, Triedman JK, Alexander ME (2022) Activity during the COVID-19 pandemic in children with cardiac rhythm management devices. Pediatr Cardiol 43:784–789

    Article  Google Scholar 

  • Rahul J, Sharma LD (2022a) Automatic cardiac arrhythmia classification based on hybrid 1-D CNN and Bi-LSTM model. Biocybern Biomed Eng 42:312–324

    Article  Google Scholar 

  • Rahul J, Sharma LD (2022b) Artificial intelligence-based approach for atrial fibrillation detection using normalised and short-duration time-frequency ECG. Biomed Signal Process Control 71:103270

    Article  Google Scholar 

  • Rappel W-J (2022) The physics of heart rhythm disorders. Phys Rep 978:1–45

    Article  MathSciNet  Google Scholar 

  • Raza A, Tran KP, Koehl L, Li S (2022) Designing ecg monitoring healthcare system with federated transfer learning and explainable ai. Knowl-Based Syst 236:107763

    Article  Google Scholar 

  • Rodriguez A (2022) Cardiology procedures. Springer, Berlin, pp 169–172

    Book  Google Scholar 

  • Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 20:53–65

    Article  Google Scholar 

  • Roy PK, Saumya S, Singh JP, Banerjee S, Gutub A (2023) Analysis of community question-answering issues via machine learning and deep learning: state-of-the-art review. CAAI Trans Intell Technol 8:95–117. https://doi.org/10.1049/cit2.12081

    Article  Google Scholar 

  • Sahoo S, Dash P, Mishra BSP, Sabut SK (2022) Deep learning-based system to predict cardiac arrhythmia using hybrid features of transform techniques. Intell Syst Appl 16:200127

    Google Scholar 

  • Saini SK, Gupta R (2022) Artificial intelligence methods for analysis of electrocardiogram signals for cardiac abnormalities: state-of-the-art and future challenges. Artif Intell Rev 55:1519–1565

    Article  Google Scholar 

  • Salvador M, Fedele M, Africa PC, Sung E, Prakosa A, Chrispin J, Trayanova N, Quarteroni A (2021) Electromechanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under arrhythmia. Comput Biol Med 136:104674

    Article  Google Scholar 

  • Sanamdikar ST, Borawake MP, Bamanikar AA (2022) Using the GAN method, analysis several characteristics of the ECG signal in order to detect cardiac arrhythmia. In: 2022 IEEE 7th international conference for convergence in technology (I2CT). IEEE, pp. 1–7

  • Sanyal S, Das D, Biswas SK, Chakraborty M, Purkayastha B (2022) Heart disease prediction using classification models. In: 2022 3rd international conference for emerging technology (INCET). IEEE, pp. 1–6

  • Satti DI, Lee TTL, Chou OHI, Ju C, Osas EE, Tse G, Lee S (2022) Statin therapy is associated with higher risk of diabetic complications: a population-based cohort study. Am Heart J 254:247

    Google Scholar 

  • Scherer ML, Aspelund T, Sigurdsson S, Detrano R, Garcia M, Mitchell GF, Launer LJ, Thorgeirsson G, Gudnason V, Harris TB (2009) Abnormal T-wave axis is associated with coronary artery calcification in older adults. Scand Cardiovasc J 43:240–248

    Article  Google Scholar 

  • Scrocco C, Ben-Haim Y, Devine B, Tome-Esteban M, Papadakis M, Sharma S, Macfarlane PW, Behr ER (2022) Role of subcutaneous implantable loop recorder for the diagnosis of arrhythmias in Brugada syndrome: a United Kingdom single-center experience. Heart Rhythm 19:70–78

    Article  Google Scholar 

  • Sefati S, Mousavinasab M, Zareh Farkhady R (2022) Load balancing in cloud computing environment using the Grey wolf optimization algorithm based on the reliability: performance evaluation. J Supercomput 78:18–42

    Article  Google Scholar 

  • Sepahvand M, Abdali-Mohammadi F (2022) A novel method for reducing arrhythmia classification from 12-lead ECG signals to single-lead ECG with minimal loss of accuracy through teacher-student knowledge distillation. Inf Sci 593:64–77

    Article  Google Scholar 

  • Shah J (2022) Caring for loved ones with heart disease. Rowman & Littlefield, Lanham

    Book  Google Scholar 

  • Shah AN, Field J, Clark BA, Olson JA, Gupta S, Nair GV, Joshi SA, Ahmed AS, Gilge JL, Steinberg LA (2022) Diagnostic utility of early premature ventricular complexes in differentiating atrioventricular reentrant and atrioventricular nodal reentrant tachycardias. Heart Rhythm 19:1836–1840

    Article  Google Scholar 

  • Shahapure KR, Nicholas C (2020) Cluster quality analysis using silhouette score. In: 2020 IEEE 7th international conference on data science and advanced analytics (DSAA). IEEE, pp. 747–748

  • Shin HS, Thakore A, Tada Y, Pedroza AJ, Ikeda G, Chen IY, Chan D, Jaatinen KJ, Yajima S, Pfrender EM (2022) Angiogenic stem cell delivery platform to augment post-infarction neovasculature and reverse ventricular remodeling. Sci Rep 12:1–21

    Article  Google Scholar 

  • Sim MG, Chan SP, Kojodjojo P, Tan ES (2022) Late pacemaker implantation after atrioventricular nodal reentrant tachycardia ablation: a systematic review and meta-analysis. J Cardiovasc Electrophysiol 33:2297–2304

    Article  Google Scholar 

  • Singh A, Singulane CC, Miyoshi T, Prado AD, Addetia K, Bellino M, Daimon M, Fajardo PG, Kasliwal RR, Kirkpatrick JN (2022) Normal values of left atrial size and function and the impact of age: results of the world alliance societies of echocardiography study. J Am Soc Echocardiogr 35:154–164

    Article  Google Scholar 

  • Strodthoff N, Mehari T, Nagel C, Aston PJ, Sundar A, Graff C, Kanters JK, Haverkamp W, Dössel O, Loewe A (2023) PTB-XL+, a comprehensive electrocardiographic feature dataset. Sci Data 10:279

    Article  Google Scholar 

  • Suliman YM, Yousif A, Bashir MB (2019) Shark smell optimization (SSO) algorithm for cloud jobs scheduling. In: international conference on computing. Springer, pp. 71–80

  • Sun M, de Groot NM, Hendriks RC (2022) Joint cardiac tissue conductivity and activation time estimation using confirmatory factor analysis. Comput Biol Med 144:105393

    Article  Google Scholar 

  • Tamargo J, Caballero R, Delpón E (2022) Cancer chemotherapy-induced sinus bradycardia: a narrative review of a forgotten adverse effect of cardiotoxicity. Drug Saf 45:1–26

    Article  Google Scholar 

  • Tirandazi P, Bamakan SMH, Toghroljerdi A (2022) A review of studies on internet of everything as an enabler of neuromarketing methods and techniques. J Supercomput 79:1–42

    Google Scholar 

  • Townsend N, Kazakiewicz D, Lucy Wright F, Timmis A, Huculeci R, Torbica A, Gale CP, Achenbach S, Weidinger F, Vardas P (2022) Epidemiology of cardiovascular disease in Europe. Nat Rev Cardiol 19:133–143

    Article  Google Scholar 

  • Triposkiadis F, Xanthopoulos A, Parissis J, Butler J, Farmakis D (2022) Pathogenesis of chronic heart failure: cardiovascular aging, risk factors, comorbidities, and disease modifiers. Heart Fail Rev 27:337–344

    Article  Google Scholar 

  • Uniat J, Silka MJ (2022) Risk assessment of pre-excitation: atrial fibrillation versus atrial flutter. Hear Case Rep. 9:31–3

    Google Scholar 

  • Verschoor-Kirss M, Rozanski E, Rush JE (2022) Use of esmolol for control of tachycardia in 28 dogs and cats (2003–2020). J Vet Emerg Crit Care 32:243–248

    Article  Google Scholar 

  • Walker AL, Ueda Y, Crofton AE, Harris SP, Stern JA (2022) Ambulatory electrocardiography, heart rate variability, and pharmacologic stress testing in cats with subclinical hypertrophic cardiomyopathy. Sci Rep 12:1–10

    Article  Google Scholar 

  • Walsh R, Offerhaus JA, Tadros R, Bezzina CR (2022) Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies. Nat Rev Cardiol 19:151–167

    Article  Google Scholar 

  • Wang DW (2022) Fulminant myocarditis. Springer, Berlin, pp 101–111

    Book  Google Scholar 

  • Wang Y, Wei S, Zhang S, Zhang Y, Zhao L, Liu C, Murray A (2018) Comparison of time-domain, frequency-domain and non-linear analysis for distinguishing congestive heart failure patients from normal sinus rhythm subjects. Biomed Signal Process Control 42:30–36

    Article  Google Scholar 

  • Wang N, Feng P, Ge Z, Zhou Y, Zhou B, Wang Z (2023) Adversarial spatiotemporal contrastive learning for electrocardiogram signals. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2023.3272153

    Article  Google Scholar 

  • Wang X, Xu Y (2019) An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. In: IOP conference series: materials science and engineering. IOP publishing, p. 052024

  • Watanakeeree K, Suba S, Mackin LA, Badilini F, Pelter MM (2021) ECG alarms during left ventricular assist device (LVAD) therapy in the ICU. Heart Lung 50:763–769

    Article  Google Scholar 

  • Wong XY, Ang YK, Li K, Chin YH, Lam SSW, Tan KBK, Chua MCH, Ong MEH, Liu N, Pourghaderi AR (2022) Development and validation of the SARICA score to predict survival after return of spontaneous circulation in out of hospital cardiac arrest using an interpretable machine learning framework. Resuscitation 170:126–133

    Article  Google Scholar 

  • Wright RE (1995) Logistic regression

  • Wu Q, Sun Y, Yan H, Wu X (2020) ECG signal classification with binarized convolutional neural network. Comput Biol Med 121:103800

    Article  Google Scholar 

  • Xiao J, Lu J, Li X (2017) Davies Bouldin index based hierarchical initialization K-means. Intell Data Anal 21:1327–1338

    Article  Google Scholar 

  • Yoon T, Kang D (2023) Bimodal CNN for cardiovascular disease classification by co-training ECG grayscale images and scalograms. Sci Rep 13:2937

    Article  Google Scholar 

  • Zeng M, Zou B, Wei F, Liu X, Wang L (2016) Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data. In: 2016 IEEE international conference of online analysis and computing science (ICOACS). IEEE, pp. 225–228

  • Zheng J, Zhang J, Danioko S, Yao H, Guo H, Rakovski C (2020) A 12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients. Sci Data 7:1–8

    Article  Google Scholar 

  • Zheng X, Wang F, Zhang J, Cui X, Jiang F, Chen N, Zhou J, Chen J, Lin S, Zou J (2022) Using machine learning to predict atrial fibrillation diagnosed after ischemic stroke. Int J Cardiol 347:21–27

    Article  Google Scholar 

  • Zhou K, Cai C, He Y, Chen Z (2022) Potential prognostic biomarkers of sudden cardiac death discovered by machine learning. Comput Biol Med 150:106154

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AD Participated in conceptualization, designing the algorithm, visualization, writing and reviewing the manuscript draft, Correction of the article in revisions by the journal and experimental implementations. RS Engaged in visualization and experimental implementations. NS Responsible for writing and reviewing the manuscript. AK Responsible for reviewing the manuscript draft, and supervising. JM Supervised the research project by assisting all co-authors in conceptualization and reviewing the manuscript.

Corresponding author

Correspondence to Javad Mohammadzadeh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest. There are no competitive resources or financial relationships in the creation of this research and all authors participated in this research voluntarily.

Ethical approval

In this research, there was no interference with ethical laws and free sources were used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

See Table 

Table 11 Beat feature information

11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daliri, A., Sadeghi, R., Sedighian, N. et al. Heptagonal Reinforcement Learning (HRL): a novel algorithm for early prevention of non-sinus cardiac arrhythmia. J Ambient Intell Human Comput 15, 2601–2620 (2024). https://doi.org/10.1007/s12652-024-04776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-024-04776-0

Keywords

Navigation