Skip to main content
Log in

Intelligent predictive computing for functional differential system in quantum calculus

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The aim of this study is to present a novel application of Levenberg–Marquardt backpropagation (LMB) to investigate numerically the solution of functional differential equations (FDE) arising in quantum calculus models (QCMs). The various types of discrete versions of FDM in QCMs are always found to be stiff to solve due to involvement of delay and to overcome the said difficulty, we proposed intelligent computing platform via LMB networks. In order to generate dataset for LMB networks, firstly, the FDEs in QCMs are converted into recurrence relations, then these recurrence systems are solved numerically on a specific input grids in case of both types of FDEs with q-exponential function as well as stable with decreasing behavior characteristics. The training, testing and validation samples based processes are employed to construct LMB networks by exploiting approximation theory on mean square error sense for obtaining the solutions of both types of FDEs. The exhaustive conducted simulation studies for solving FDEs in QCMs via absolute error and mean squared error endorse the accuracy, potential, convergence, stability and worth of proposed technique, which further certified through viable training state parameters, outcomes of error histograms, values of regression/correlation indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Source

No data is associated with this study.

References

  • Adel W, Sabir Z (2020a) Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur Phys J Plus 135(5):1–12

    Article  Google Scholar 

  • Adel W, Sabir Z (2020b) Solving a new design of nonlinear second-order Lane–Emden pantograph delay differential model via Bernoulli collocation method. Eur Phys J Plus 135(5):1–12

    Article  Google Scholar 

  • Ahmad I, Asad SM (2020) Predictions of coronavirus COVID-19 distinct cases in Pakistan through an artificial neural network. Epidemiol Infect 148:e222

    Article  Google Scholar 

  • Ahmad I, Ahmad F, Bilal M et al (2020a) Neuro-heuristic computational intelligence for nonlinear Thomas–Fermi equation using trigonometric and hyperbolic approximation. Measurement 156:107549

    Article  Google Scholar 

  • Ahmad I, Qureshi H, Bilal M et al (2020b) Stochastic technique for solutions of non-linear fin equation arising in thermal equilibrium model. Therm Sci 24(5 Part A):3013–3022

    Article  Google Scholar 

  • Ahmad I, Ahmad SuI, Kutlu K et al (2021a) On the dynamical behavior of nonlinear Fitzhugh–Nagumo and Bateman–Burger equations in quantum model using Sinc collocation scheme. Eur Phys J Plus 136(11):1108

    Article  Google Scholar 

  • Ahmad I, Cheema TN, Raja MAZ et al (2021b) A novel application of Lobatto IIIA solver for numerical treatment of mixed convection nanofluidic model. Sci Rep 11(1):4452

    Article  Google Scholar 

  • Ahmad I, Ilyas H, Raja MAZ et al (2021c) Stochastic numerical computing with Levenberg–Marquardt backpropagation for performance analysis of heat sink of functionally graded material of the porous fin. Surf Interfaces 26:101403

    Article  Google Scholar 

  • Ahmad I, Raja MAZ, Ramos H et al (2021d) Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically. Neural Comput Appl 33:5753–5769

    Article  Google Scholar 

  • Ahmad I, Ilyas H, Raja MAZ et al (2022) Intelligent computing based supervised learning for solving nonlinear system of malaria endemic model. AIMS Math 7(11):20341–20369

    Article  MathSciNet  Google Scholar 

  • Ali S, Raja MAZ, Cheema TN et al (2021) Analysis of Williamson nanofluid with velocity and thermal slips past over a stretching sheet by Lobatto IIIA numerically. Therm Sci 25(4 Part A):2795–2805

    Article  Google Scholar 

  • Almutairi OB (2022) Quantum estimates for different type intequalities through generalized convexity. Entropy 24(5):728

    Article  MathSciNet  Google Scholar 

  • Alp N, Budak H, Erden S et al (2022) New bounds for q-midpoint-type inequalities via twice q-differentiable functions on quantum calculus. Soft Comput 26(19):10321–10329

    Article  Google Scholar 

  • Ansari H, Mokhtary P (2019) Computational Legendre Tau method for Volterra Hammerstein pantograph integral equations. Bull Iran Math Soc 45:475–493

    Article  MathSciNet  Google Scholar 

  • Arbi A, Tahri N (2022) New results on time scales of pseudo Weyl almost periodic solution of delayed QVSICNNs. Comput Appl Math 41(6):293

    Article  MathSciNet  Google Scholar 

  • Asghar SA, Naz S, Raja MAZ (2023) Intelligent computing with the knack of Bayesian neural networks for functional differential systems in quantum calculus model. Int J Mod Phys B 37(22):2350217

  • Bahgat MS (2020) Approximate analytical solution of the linear and nonlinear multi-pantograph delay differential equations. Phys Scr 95(5):055219

    Article  Google Scholar 

  • Bhatia M, Bhatia S, Hooda M et al (2022) Analyzing and classifying MRI images using robust mathematical modeling. Multimed Tools Appl 81(26):37519–37540

    Article  Google Scholar 

  • Botmart T, Sabir Z, Raja MAZ et al (2022) A numerical study of the fractional order dynamical nonlinear susceptible infected and quarantine differential model using the stochastic numerical approach. Fractal Fract 6(3):139

    Article  Google Scholar 

  • Bukhari AH, Raja MAZ, Sulaiman M et al (2020a) Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 8:71326–71338

    Article  Google Scholar 

  • Bukhari AH, Sulaiman M, Raja MAZ et al (2020b) Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system. Alex Eng J 59(5):3325–3345

    Article  Google Scholar 

  • Bukhari AH, Raja MAZ, Rafiq N et al (2022) Design of intelligent computing networks for nonlinear chaotic fractional Rossler system. Chaos Solitons Fractals 157:111985

    Article  MathSciNet  Google Scholar 

  • Butt ZI, Ahmad I, Shoaib M et al (2022) Electro-magnetohydrodynamic impact on Darrcy–Forchheimer viscous fluid flow over a stretchable surface: integrated intelligent neuro-evolutionary computing approach. Int Commun Heat Mass Transf 137:106262

    Article  Google Scholar 

  • Chakraborty R, Verma G, Namasudra S (2021) IFODPSO-based multi-level image segmentation scheme aided with Masi entropy. J Ambient Intell Humaniz Comput 12:7793–7811

    Article  Google Scholar 

  • Chaudhary NI, Khan ZA, Kiani AK et al (2022) Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems. Chaos Solitons Fractals 163:112611

    Article  MathSciNet  Google Scholar 

  • Chen Z (2022) Research on internet security situation awareness prediction technology based on improved RBF neural network algorithm. J Comput Cogn Eng 1(3):103–108

    Google Scholar 

  • Deng Y, Zhou X, Shen J et al (2021) New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water. Sci Total Environ 772:145534

    Article  Google Scholar 

  • Ezz-Eldien SS, Doha EH (2019) Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer Algorithms 81:57–77

    Article  MathSciNet  Google Scholar 

  • Fečkan M, Wang J, Zhao HY (2021) Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations. Appl Math Lett 113:106886

    Article  MathSciNet  Google Scholar 

  • Gao Y, Jia L (2023) Stability in distribution for uncertain delay differential equations based on new Lipschitz condition. J Ambient Intell Humaniz Comput 14(10):13585–13599

    Article  Google Scholar 

  • Griebel T (2017) The pantograph equation in quantum calculus. Missouri University of Science and Technology, Rolla

    Google Scholar 

  • Guo P, Li CJ (2019a) Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations. Numer Algorithms 80:1391–1411

    Article  MathSciNet  Google Scholar 

  • Guo P, Li CJ (2019b) Razumikhin-type theorems on the moment stability of the exact and numerical solutions for the stochastic pantograph differential equations. J Comput Appl Math 355:77–90

    Article  MathSciNet  Google Scholar 

  • Hou CC, Simos TE, Famelis IT (2020) Neural network solution of pantograph type differential equations. Math Methods Appl Sci 43(6):3369–3374

    Article  MathSciNet  Google Scholar 

  • Ilyas H, Ahmad I, Raja MAZ et al (2021a) A novel design of Gaussian WaveNets for rotational hybrid nanofluidic flow over a stretching sheet involving thermal radiation. Int Commun Heat Mass Transf 123:105196

    Article  Google Scholar 

  • Ilyas H, Ahmad I, Raja MAZ et al (2021b) Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. Int J Hydrog Energy 46(7):4947–4980

    Article  Google Scholar 

  • Ilyas H, Ahmad I, Raja MAZ et al (2021c) Intelligent networks for crosswise stream nanofluidic model with Cu–H\(_2\)O over porous stretching medium. Int J Hydrog Energy 46(29):15322–15336

    Article  Google Scholar 

  • Ilyas H, Raja MAZ, Ahmad I et al (2021d) A novel design of gaussian wavelet neural networks for nonlinear Falkner–Skan systems in fluid dynamics. Chin J Phys 72:386–402

    Article  MathSciNet  Google Scholar 

  • Jafari H, Tuan N, Ganji R (2021) A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations. J King Saud Univ Sci 33(1):101185

    Article  Google Scholar 

  • Jafarian A, Rezaei R, Khalili Golmankhaneh A (2022) On solving fractional higher-order equations via artificial neural networks. Iran J Sci Technol Trans A: Sci 46(2):535–545

    Article  MathSciNet  Google Scholar 

  • Jia D (2022) Time-space duality in 2D quantum gravity. Class Quantum Gravity 39(3):035016

    Article  MathSciNet  Google Scholar 

  • Jia ZA, Yi B, Zhai R et al (2019) Quantum neural network states: a brief review of methods and applications. Adv Quantum Technol 2(7–8):1800077

    Article  Google Scholar 

  • Jin T, Xia H (2023) Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type. J Ambient Intell Humaniz Comput 14(6):6435–6448

  • Karthik P, Sekhar K (2021) Resource scheduling approach in cloud testing as a service using deep reinforcement learning algorithms. CAAI Trans Intell Technol 6(2):147–154

    Article  Google Scholar 

  • Khan I, Raja MAZ, Shoaib M et al (2020) Design of neural network with Levenberg–Marquardt and Bayesian regularization backpropagation for solving pantograph delay differential equations. IEEE Access 8:137918–137933

    Article  Google Scholar 

  • Liu Z, Kang R (2023) Michaelis–Menten pharmacokinetics based on uncertain differential equations. J Ambient Intell Humaniz Comput 14(8):10403–10415

    Article  Google Scholar 

  • Lodhi S, Manzar MA, Raja MAZ (2019) Fractional neural network models for nonlinear Riccati systems. Neural Comput Appl 31:359–378

    Article  Google Scholar 

  • Mouktonglang T, Sabir Z, Raja MAZ et al (2023) Designing Meyer wavelet neural networks for the three-species food chain model. AIMS Math 8(1):61–75

    Article  MathSciNet  Google Scholar 

  • Muhuri S, Kumari S, Namasudra S, Kadry S (2022) Analysis of the pertinence of indian women’s institutions in collaborative research. IEEE Trans Comput Soc Syst. https://doi.org/10.1109/TCSS.2022.3183949

  • Mukdasai K, Sabir Z, Raja MAZ et al (2022) A numerical simulation of the fractional order leptospirosis model using the supervise neural network. Alex Eng J 61(12):12431–12441

    Article  Google Scholar 

  • Nawaz Y, Arif MS, Abodayeh K (2022) A compact numerical scheme for the heat transfer of mixed convection flow in quantum calculus. Appl Sci 12(10):4959

    Article  Google Scholar 

  • Nouri K, Ranjbar H, Torkzadeh L (2020) Solving the stochastic differential systems with modified split-step Euler–Maruyama method. Commun Nonlinear Sci Numer Simul 84:105153

    Article  MathSciNet  Google Scholar 

  • Ockendon JR, Tayler AB (1971) The dynamics of a current collection system for an electric locomotive. Proc R Soc Lond A Math Phys Sci 322(1551):447–468

    Google Scholar 

  • Rabiei K, Ordokhani Y (2019) Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Eng Comput 35(4):1431–1441

    Article  Google Scholar 

  • Radha B, Duraisamy C (2021) The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations. J Ambient Intell Humaniz Comput 12:6591–6597

    Article  Google Scholar 

  • Raja MAZ, Mehmood A, Ashraf S et al (2022a) Design of evolutionary finite difference solver for numerical treatment of computer virus propagation with countermeasures model. Math Comput Simul 193:409–430

    Article  MathSciNet  Google Scholar 

  • Raja MAZ, Shoaib M, Tabassum R et al (2022b) Stochastic numerical computing for entropy optimized of Darcy–Forchheimer nanofluid flow: Levenberg Marquardt algorithm. Chem Phys Lett 807:140070

    Article  Google Scholar 

  • Raja MAZ, Tabassum R, El-Zahar ER et al (2022c) Intelligent computing through neural networks for entropy generation in MHD third-grade nanofluid under chemical reaction and viscous dissipation. Waves Random Complex Media 1–25. https://doi.org/10.1080/17455030.2022.2044095

  • Rizwan A, Ahmad I, Raja MAZ et al (2021) Design of spline-evolutionary computing paradigm for nonlinear thin film flow model. Arab J Sci Eng 46(9):9279–9299

    Article  Google Scholar 

  • Sabir Z, Raja MAZ, Umar M et al (2020a) Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden–Fowler equation. Eur Phys J Plus 135(5):410

    Article  Google Scholar 

  • Sabir Z, Raja MAZ, Umar M et al (2020b) Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden–Fowler equation. Eur Phys J Plus 135(5):410

    Article  Google Scholar 

  • Sabir Z, Raja MAZ, Umar M et al (2020c) Neuro-swarm intelligent computing to solve the second-order singular functional differential model. Eur Phys J Plus 135:1–19

    Article  Google Scholar 

  • Sabir Z, Saoud S, Raja MAZ et al (2020d) Heuristic computing technique for numerical solutions of nonlinear fourth order Emden–Fowler equation. Math Comput Simul 178:534–548

    Article  MathSciNet  Google Scholar 

  • Sabir Z, Wahab HA, Umar M et al (2020e) Novel design of Morlet wavelet neural network for solving second order Lane–Emden equation. Math Comput Simul 172:1–14

    Article  MathSciNet  Google Scholar 

  • Sabir Z, Raja MAZ, Wahab HA et al (2021) Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane–Emden pantograph models. Math Comput Simul 188:87–101

    Article  MathSciNet  Google Scholar 

  • Sabir Z, Botmart T, Raja MAZ et al (2022a) Artificial neural network scheme to solve the nonlinear influenza disease model. Biomed Signal Process Control 75:103594

    Article  Google Scholar 

  • Sabir Z, Raja MAZ, Mahmoud SR et al (2022b) A novel design of Morlet wavelet to solve the dynamics of nervous stomach nonlinear model. Int J Comput Intell Syst 15(1):4

    Article  Google Scholar 

  • Sabir Z, Ali MR, Sadat R (2023) Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model. J Ambient Intell Humaniz Comput 14(7):8913–8922

    Article  Google Scholar 

  • Sana G, Noor MA, Baleanu D (2021) Novel higher order iterative schemes based on the q-calculus for solving nonlinear equations. http://hdl.handle.net/20.500.12416/5744 (Online)

  • Shahid F, Zameer A, Mehmood A et al (2020) A novel wavenets long short term memory paradigm for wind power prediction. Appl Energy 269:115098

    Article  Google Scholar 

  • Shaimardan S, Tokmagambetov NS (2022) The Schrödinger equations generated by g-Bessel operator in quantum calculus. Of the Karaganda University, p 102. https://doi.org/10.31489/2022M1/102-108

  • Shoaib M, Naz S, Raja MAZ et al (2022) A design of soft computing intelligent networks for MHD Carreau nanofluid model with thermal radiation. Int J Mod Phys B 36(27):2250192

    Article  Google Scholar 

  • Sinha A (1993) Stabilisation of time-varying infinite delay control systems. In: IEEE proceedings D (control theory and applications). IET, London, UK, pp 60–63

  • Sun B, Cao Y, Guo Z et al (2020a) Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control. Appl Math Comput 375:125093

    MathSciNet  Google Scholar 

  • Sun B, Wen S, Wang S et al (2020b) Quantized synchronization of memristive neural networks with time-varying delays via super-twisting algorithm. Neurocomputing 380:133–140

    Article  Google Scholar 

  • Umar M, Raja MAZ, Sabir Z et al (2020a) A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. Eur Phys J Plus 135(7):1–23

    Article  Google Scholar 

  • Umar M, Sabir Z, Amin F et al (2020b) Stochastic numerical technique for solving HIV infection model of CD4\(^{+}\) T cells. Eur Phys J Plus 135:1–19

    Article  Google Scholar 

  • Umar M, Sabir Z, Raja MAZ et al (2020c) A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics. Symmetry 12(10):1628

    Article  Google Scholar 

  • Umar M, Sabir Z, Raja MAZ et al (2021) Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells. Math Comput Simul 188:241–253

    Article  MathSciNet  Google Scholar 

  • Verma R, Kumari A, Anand A et al (2024) Revisiting shift cipher technique for amplified data security. J Comput Cogn Eng 3(1):8–14

  • Viera-Martin E, Gómez-Aguilar J, Solís-Pérez J et al (2022) Artificial neural networks: a practical review of applications involving fractional calculus. Eur Phys J Spec Top 231(10):2059–2095

    Article  Google Scholar 

  • Wake G, Cooper S, Kim H et al (2000) Functional differential equations for cell-growth models with dispersion. Commun Appl Anal 4(4):561–574

    MathSciNet  Google Scholar 

  • Wang Y, Cao Y, Guo Z et al (2020) Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse. Appl Math Comput 369:124838

    MathSciNet  Google Scholar 

  • Yang C, Lv X (2021) Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation. Math Methods Appl Sci 44(1):153–165

    Article  MathSciNet  Google Scholar 

  • Yang X, Yang Z, Xiao Y (2022) Asymptotical mean-square stability of linear \(\theta \)-methods for stochastic pantograph differential equations: variable stepsize and transformation approach. Int J Comput Math 99(4):759–770

    Article  MathSciNet  Google Scholar 

  • Zhan W, Gao Y, Guo Q et al (2019) The partially truncated Euler–Maruyama method for nonlinear pantograph stochastic differential equations. Appl Math Comput 346:109–126

    MathSciNet  Google Scholar 

  • Zhao W, Rexma Sherine V, Gerly T et al (2022) Symmetric difference operator in quantum calculus. Symmetry 14(7):1317

    Article  Google Scholar 

  • Zhu W, Xian L, Wang E et al (2019) Learning classification of big medical imaging data based on partial differential equation. J Ambient Intell Humaniz Comput 1–10. https://doi.org/10.1007/s12652-019-01185-6

  • Zhu J, Ma X, Lin Z, De Meo P (2023) A quantum‐like approach for text generation from knowledge graphs. CAAI Trans Intell Technol 8(4):1455–1463

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Ethics declarations

Conflict of interest

There is no any conflict of the interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, S.A., Ilyas, H., Naz, S. et al. Intelligent predictive computing for functional differential system in quantum calculus. J Ambient Intell Human Comput 15, 2153–2168 (2024). https://doi.org/10.1007/s12652-023-04744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-023-04744-0

Keywords

Navigation