Skip to main content
Log in

Numerical treatment of singular functional systems in quantum calculus: adaptive backpropagated Levenberg–Marquardt neural networks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The purpose of this research is to investigate the numerical solutions of singular functional delay differential equations (SFDDEs) of third, fourth and fifth orders, which arises in quantum calculus models, by utilizing the applications of adaptive Levenberg–Marquardt backpropagation (LMB) neural networks. The presence of delay term as well as singularity causes difficulty in investigation of such types of functional differential equations, and these stiffness factors are overcome by employing the designed LMB technique. The stiff functional delay systems in quantum calculus are transformed into the iterative expressions, and synthetic datasets are generated for the SFDDEs by varying quantum and pantograph delay parameters, as well as the coefficients of delay and singular terms. The synthesize data is feed to the designed LMB neural networks for training, testing and validation processes to construct the approximate solution models of SFDDEs. The accuracy of proposed LMB technique is certified by comparison of the obtained numerical results with reference solutions through absolute error analysis, mean square error, regression index metric, convergence curves, histogram studies and training state parameters for each dynamical scenario of SFDDEs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

No data are associated with this manuscript.

References

  1. J.R. Ockendon, A.B. Tayler, (1971). The dynamics of a current collection system for an electric locomotive, in Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 322(1551), pp. 447-468

  2. P. Wahi, (2005). A study of delay differential equations with applications to machine tool vibrations (Doctoral dissertation, Ph. D. Thesis, Indian Institute of Science, Bangalore)

  3. K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, vol. 74 (Springer Science Business Media, 1992)

  4. S.A. Asghar, S. Naz, M.A.Z. Raja, Intelligent computing with the knack of Bayesian neural networks for functional differential systems in Quantum calculus model. Int. J. Modern Phys. B (2023). https://doi.org/10.1142/S021797922350217X

    Article  Google Scholar 

  5. T. Griebel, (2017). The pantograph equation in quantum calculus. Missouri University of Science and Technology

  6. V. Spiridonov, Universal superpositions of coherent states and self-similar potentials. Phys. Rev. A 52(3), 1909 (1995)

    Article  ADS  Google Scholar 

  7. S. Cooper, H.K. Kim, B. van Brunt, G.C. Wake, Functional differential equations for cell-growth models with dispersion. Comm. Appl. Anal 4, 561–573 (2000)

    MathSciNet  Google Scholar 

  8. A. S. C. Sinha, (1993). Stabilisation of time-varying infinite delay control systems, in IEE Proceedings D (Control Theory and Applications) (Vol. 140, No. 1, pp. 60-63). IET Digital Library

  9. P. Guo, C.J. Li, Razumikhin-type theorems on the moment stability of the exact and numerical solutions for the stochastic pantograph differential equations. J. Comput. Appl. Math. 355, 77–90 (2019)

    Article  MathSciNet  Google Scholar 

  10. P. Guo, C.J. Li, Almost sure stability with general decay rate of exact and numerical solutions for stochastic pantograph differential equations. Numer. Algorithms 80(4), 1391–1411 (2019)

    Article  MathSciNet  Google Scholar 

  11. H. Jafari, N.A. Tuan, R.M. Ganji, A new numerical scheme for solving pantograph type nonlinear fractional integro-differential equations. J. King Saud Univ. Sci. 33(1), 101185 (2021)

    Article  Google Scholar 

  12. K. Nouri, H. Ranjbar, L. Torkzadeh, Modified stochastic theta methods by ODEs solvers for stochastic differential equations. Commun. Nonlinear Sci. Numer. Simul. 68, 336–346 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. W. Zhan, Y. Gao, Q. Guo, X. Yao, The partially truncated Euler-Maruyama method for nonlinear pantograph stochastic differential equations. Appl. Math. Comput. 346, 109–126 (2019)

    MathSciNet  Google Scholar 

  14. C. Yang, X. Lv, Generalized Jacobi spectral Galerkin method for fractional pantograph differential equation. Math. Methods Appl. Sci. 44(1), 153–165 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Ansari, P. Mokhtary, Computational Legendre Tau method for Volterra Hammerstein pantograph integral equations. Bull. Iran. Math. Soc. 45(2), 475–493 (2019)

    Article  MathSciNet  Google Scholar 

  16. M.S. Bahgat, Approximate analytical solution of the linear and nonlinear multi-pantograph delay differential equations. Phys. Scr. 95(5), 055219 (2020)

    Article  ADS  Google Scholar 

  17. S. Ali, M.A.Z. Raja, T.N. Cheema, I. Ahmad, N. Mian, M. Shoaib, Analysis of Williamson nanofluid with velocity and thermal slips past over a stretching sheet by Lobatto IIIA numerically. Therm. Sci. 00, 159–159 (2021)

    Google Scholar 

  18. A.H. Bukhari, M.A.Z. Raja, M. Sulaiman, S. Islam, M. Shoaib, P. Kumam, Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 8, 71326–71338 (2020)

    Article  Google Scholar 

  19. I. Ahmad, H. Ilyas, M.A.Z. Raja, Z. Khan, M. Shoaib, Stochastic numerical computing with Levenberg–Marquardt backpropagation for performance analysis of heat Sink of functionally graded material of the porous fin. Surf. Interfaces 26, 101403 (2021)

    Article  Google Scholar 

  20. H. Ilyas, I. Ahmad, M.A.Z. Raja, M.B. Tahir, M. Shoaib, Intelligent computing for the dynamics of fluidic system of electrically conducting Ag/Cu nanoparticles with mixed convection for hydrogen possessions. Int. J. Hydrogen Energy 46(7), 4947–4980 (2021)

    Article  Google Scholar 

  21. M. Umar, Z. Sabir, M.A.Z. Raja, M. Shoaib, M. Gupta, Y.G. Sanchez, A stochastic intelligent computing with neuro-evolution heuristics for nonlinear SITR system of novel COVID-19 dynamics. Symmetry 12(10), 1628 (2020)

    Article  ADS  Google Scholar 

  22. H. Ilyas, M.A.Z. Raja, I. Ahmad, M. Shoaib, A novel design of Gaussian Wavelet Neural Networks for nonlinear Falkner–Skan systems in fluid dynamics. Chin. J. Phys. 72, 386–402 (2021)

    Article  MathSciNet  Google Scholar 

  23. Z. Sabir, T. Botmart, M.A.Z. Raja, R. Sadat, M.R. Ali, A.A. Alsulami, A. Alghamdi, Artificial neural network scheme to solve the nonlinear influenza disease model. Biomed. Signal Process. Control 75, 103594 (2022)

    Article  Google Scholar 

  24. M. Feckan, J. Wang, H.Y. Zhao, Maximal and minimal nondecreasing bounded solutions of iterative functional differential equations. Appl. Math. Lett. 113, 106886 (2021)

    Article  MathSciNet  Google Scholar 

  25. F. Shahid, A. Zameer, A. Mehmood, M.A.Z. Raja, A novel wavenets long short term memory paradigm for wind power prediction. Appl. Energy 269, 115098 (2020)

    Article  Google Scholar 

  26. I. Ahmad, H. Qureshi, M. Bilal, M. Usman, Stochastic technique for solutions of non-linear fin equation arising in thermal equilibrium model. Thermal Sci. 24(5), 3013–3022 (2020)

    Article  Google Scholar 

  27. A.H. Bukhari, M.A.Z. Raja, N. Rafiq, M. Shoaib, A.K. Kiani, C.M. Shu, Design of intelligent computing networks for nonlinear chaotic fractional Rossler system. Chaos Solitons Fractals 157, 111985 (2022)

    Article  MathSciNet  Google Scholar 

  28. I. Ahmad, F. Ahmad, M. Bilal, Neuro-Heuristic computational intelligence for nonlinear Thomas-Fermi equation using trigonometric and hyperbolic approximation. Measurement 156, 107549 (2020)

    Article  Google Scholar 

  29. H. Ilyas, I. Ahmad, M.A.Z. Raja, M.B. Tahir, M. Shoaib, Intelligent networks for crosswise stream nanofluidic model with Cu-H2O over porous stretching medium. Int. J. Hydrogen Energy 46(29), 15322–15336 (2021)

    Article  Google Scholar 

  30. I. Ahmad, M.A.Z. Raja, H. Ramos, M. Bilal, M. Shoaib, Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically. Neural Comput. Appl. 33(11), 5753–5769 (2021)

    Article  Google Scholar 

  31. K. Rabiei, Y. Ordokhani, Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Eng. Comput. 35(4), 1431–1441 (2019)

    Article  Google Scholar 

  32. H. Ilyas, I. Ahmad, M.A.Z. Raja, M. Shoaib, A novel design of Gaussian WaveNets for rotational hybrid nanofluidic flow over a stretching sheet involving thermal radiation. Int. Commun. Heat Mass Transfer 123, 105196 (2021)

    Article  Google Scholar 

  33. I. Ahmad, T.N. Cheema, M.A.Z. Raja, S.E. Awan, N.B. Alias, S. Iqbal, M. Shoaib, A novel application of Lobatto IIIA solver for numerical treatment of mixed convection nanofluidic model. Sci. Rep. 11(1), 1–16 (2021)

    Google Scholar 

  34. M. Umar, Z. Sabir, F. Amin, J.L. Guirao, M.A.Z. Raja, Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur. Phys. J. Plus 135(5), 403 (2020)

    Article  Google Scholar 

  35. M. Umar, Z. Sabir, M.A.Z. Raja, J.G. Aguilar, F. Amin, M. Shoaib, Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells. Math. Comput. Simul. 188, 241–253 (2021)

    Article  MathSciNet  Google Scholar 

  36. Z. Sabir, H.A. Wahab, M. Umar, M.G. Sakar, M.A.Z. Raja, Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation. Math. Comput. Simul. 172, 1–14 (2020)

    Article  MathSciNet  Google Scholar 

  37. A.H. Bukhari, M. Sulaiman, M.A.Z. Raja, S. Islam, M. Shoaib, P. Kumam, Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system. Alex. Eng. J. 59(5), 3325–3345 (2020)

    Article  Google Scholar 

  38. Z. Sabir, M.A.Z. Raja, H.A. Wahab, G.C. Altamirano, Y.D. Zhang, D.N. Le, Integrated intelligence of neuro-evolution with sequential quadratic programming for second-order Lane-Emden pantograph models. Math. Comput. Simul. 188, 87–101 (2021)

    Article  MathSciNet  Google Scholar 

  39. M. Umar, M.A.Z. Raja, Z. Sabir, A.S. Alwabli, M. Shoaib, A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. Eur. Phys. J. Plus 135(7), 1–23 (2020)

    Article  Google Scholar 

  40. Y. Deng, X. Zhou, J. Shen, G. Xiao, H. Hong, H. Lin, B.Q. Liao, New methods based on back propagation (BP) and radial basis function (RBF) artificial neural networks (ANNs) for predicting the occurrence of haloketones in tap water. Sci. Total Environ. 772, 145534 (2021)

    Article  ADS  Google Scholar 

  41. Z. Sabir, M.A. Zahoor Raja, J.L. Guirao, T. Saeed, (2022). Design of mayer wavelet neural networks for solving functional nonlinear singular differential equation. Math. Probl. Eng.

  42. N. Anwar, I. Ahmad, A.K. Kiani, S. Naz, M. Shoaib, M.A.Z. Raja, Intelligent solution predictive control strategy for nonlinear hepatitis B epidemic model with delay. Waves Random Compl. Media (2023). https://doi.org/10.1080/17455030.2023.2178827

    Article  Google Scholar 

  43. X. Yang, Z. Yang, Y. Xiao, (2021). Asymptotical mean-square stability of linear ?-methods for stochastic pantograph differential equations: variable stepsize and transformation approach. Int. J. Comput. Math., (just-accepted), pp. 1–13

  44. S.S. Ezz-Eldien, E.H. Doha, Fast and precise spectral method for solving pantograph type Volterra integro-differential equations. Numer. Algorithms 81(1), 57–77 (2019)

    Article  MathSciNet  Google Scholar 

  45. S. Lodhi, M.A. Manzar, M.A.Z. Raja, Fractional neural network models for nonlinear Riccati systems. Neural Comput. Appl. 31(1), 359–378 (2019)

    Article  Google Scholar 

  46. A. Rizwan, I. Ahmad, M. A. Z. Raja, M. Shoaib, (2021). Design of spline-evolutionary computing paradigm for nonlinear thin film flow model. Arab. J. Sci. Eng., pp. 1–21

  47. Z. Sabir, S. Saoud, M.A.Z. Raja, H.A. Wahab, A. Arbi, Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation. Math. Comput. Simul. 178, 534–548 (2020)

    Article  MathSciNet  Google Scholar 

  48. Z. Sabir, M.A.Z. Raja, M. Umar, M. Shoaib, Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation. Eur. Phys. J. Plus 135(5), 410 (2020)

    Article  Google Scholar 

  49. B. Sun, S. Wen, S. Wang, T. Huang, Y. Chen, P. Li, Quantized synchronization of memristive neural networks with time-varying delays via super-twisting algorithm. Neurocomputing 380, 133–140 (2020)

    Article  Google Scholar 

  50. Z. Sabir, M.A.Z. Raja, M. Umar, M. Shoaib, Neuro-swarm intelligent computing to solve the second-order singular functional differential model. Eur. Phys. J. Plus 135(6), 474 (2020)

    Article  Google Scholar 

  51. B. Sun, Y. Cao, Z. Guo, Z. Yan, S. Wen, Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control. Appl. Math. Comput. 375, 125093 (2020)

    MathSciNet  Google Scholar 

  52. Z. Sabir, M.A.Z. Raja, M. Umar, M. Shoaib, Design of neuro-swarming-based heuristics to solve the third-order nonlinear multi-singular Emden-Fowler equation. Eur. Phys. J. Plus 135(6), 1–17 (2020)

    Google Scholar 

  53. Y. Wang, Y. Cao, Z. Guo, S. Wen, Passivity and passification of memristive recurrent neural networks with multi-proportional delays and impulse. Appl. Math. Comput. 369, 124838 (2020)

    MathSciNet  Google Scholar 

  54. I. Khan, M.A.Z. Raja, M. Shoaib, P. Kumam, H. Alrabaiah, Z. Shah, S. Islam, Design of neural network With LMB and Bayesian regularization backpropagation for solving pantograph delay differential equations. IEEE Access 8, 137918–137933 (2020)

    Article  Google Scholar 

  55. M. A. Z. Raja, R. Tabassum, E.R. El-Zahar, M. Shoaib, M.I. Khan, M. Y., Malik, S. Qayyum, (2022). Intelligent computing through neural networks for entropy generation in MHD third-grade nanofluid under chemical reaction and viscous dissipation. Waves Random Compl. Media, pp. 1–25

  56. T. Botmart, Z. Sabir, M.A.Z. Raja, W. Weera, R. Sadat, M.R. Ali, A numerical study of the fractional order dynamical nonlinear susceptible infected and quarantine differential model using the stochastic numerical approach. Fractal Fract. 6(3), 139 (2022)

    Article  Google Scholar 

  57. M.A.Z. Raja, A. Mehmood, S. Ashraf, K.M. Awan, P. Shi, Design of evolutionary finite difference solver for numerical treatment of computer virus propagation with countermeasures model. Math. Comput. Simul. 193, 409–430 (2022)

    Article  MathSciNet  Google Scholar 

  58. C.C. Hou, T.E. Simos, I.T. Famelis, Neural network solution of pantograph type differential equations. Math. Methods Appl. Sci. 43(6), 3369–3374 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  59. N. Anwar, I. Ahmad, A. Fatima, A.K. Kiani, M. Shoaib, M.A.Z. Raja, Design of intelligent Bayesian supervised predictive networks for nonlinear delay differential systems of avian influenza model. Eur. Phys. J. Plus 138(10), 911 (2023)

    Article  Google Scholar 

  60. N. Anwar, I. Ahmad, A.K. Kiani, M. Shoaib, M.A.Z. Raja, (2023). Intelligent solution predictive networks for non-linear tumor-immune delayed model. Comput. Methods Biomech. Biomed. Eng., pp. 1–28

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Ethics declarations

Conflicts of interest

All the authors have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1273 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, S.A., Ahmad, I., Ilyas, H. et al. Numerical treatment of singular functional systems in quantum calculus: adaptive backpropagated Levenberg–Marquardt neural networks. Eur. Phys. J. Plus 139, 10 (2024). https://doi.org/10.1140/epjp/s13360-023-04735-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04735-2

Navigation