Skip to main content
Log in

Effective and efficient classification of gastrointestinal lesions: combining data preprocessing, feature weighting, and improved ant lion optimization

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

This paper presents an approach that combines the data preprocessing, feature weighting, and the improved antlion optimization algorithm for effective and efficient classification of gastrointestinal lesions. A high-dimensional gastrointestinal lesion dataset that consists of extracted texture, color, and shape features from the colonoscopy videos is obtained from the UCI repository. The data has certain imperfections such as the presence of zero-valued features, outliers, and dominant features. So, it is preprocessed to cope with these problems. Then, feature weighting is used to boost the classification performance by assigning the weights to the features according to their relevance in classification. The improved antlion optimization algorithm is used to search for feature weights and the parameters of the Support Vector Machines simultaneously. The experiments are performed using different combinations of features and endoscopic images to analyse the performance. The outcomes show that the combination of texture and color features from NBI images is the best. The accuracy of 97.37% and 98.68% for multi-class and binary classification problems respectively is attained using only \(\sim\)31% features. Moreover, feature reduction helps to lower the runtime of the classifier by approx. 60%. In conclusion, a better approach is presented for colorectal lesions classification that competes with well-experienced colonoscopists and outperforms the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abe S (2005) Support vector machines for pattern classification, vol 2. Springer, Berlin

    MATH  Google Scholar 

  • Ali E, Elazim SA, Abdelaziz A (2017) Ant lion optimization algorithm for optimal location and sizing of renewable distributed generations. Renew Energy 101:1311–1324

    Article  Google Scholar 

  • AlSukker A, Khushaba R, Al-Ani A (2010) Optimizing the \(k\)-nn metric weights using differential evolution. In: IEEE international conference on multimedia computing and information technology (MCIT), IEEE, pp 89–92

  • Amari Si WuS (1999) Improving support vector machine classifiers by modifying kernel functions. Neural Netw 12(6):783–789

    Article  Google Scholar 

  • Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F (2017) Global patterns and trends in colorectal cancer incidence and mortality. Gut 66(4):683–691

    Article  Google Scholar 

  • Asuncion A, Newman D (2007) Uci machine learning repository. http://archive.ics.uci.edu/ml. Accessed Sept 2020

  • Barbalata C, Mattos LS (2014) Laryngeal tumor detection and classification in endoscopic video. IEEE J Biomed Health Inform 20(1):322–332

    Article  Google Scholar 

  • Bo L, Ren X, Fox D (2011) Depth kernel descriptors for object recognition. In: IEEE/RSJ international conference on Intelligent robots and systems (IROS), pp 821–826

  • Bond JH (1993) Polyp guideline: diagnosis, treatment, and surveillance for patients with nonfamilial colorectal polyps. Ann Intern Med 119(8):836–843

    Article  Google Scholar 

  • Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the fifth annual workshop on computational learning theory, pp 144–152

  • Cao LJ, Tay FEH (2003) Support vector machine with adaptive parameters in financial time series forecasting. IEEE Trans Neural Netw 14(6):1506–1518

    Article  Google Scholar 

  • Chitrakar R, Huang C (2014) Selection of candidate support vectors in incremental SVM for network intrusion detection. Comput Secur 45:231–241

    Article  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  • de Souza Jr LA, Palm C, Mendel R, Hook C, Ebigbo A, Probst A, Messmann H, Weber S, Papa JP (2018) A survey on Barrett’s esophagus analysis using machine learning. Comput Biol Med 96:203–213

    Article  Google Scholar 

  • de Souza LA, Afonso LCS, Ebigbo A, Probst A, Messmann H, Mendel R, Hook C, Palm C, Papa JP (2020) Learning visual representations with optimum-path forest and its applications to Barrett’s esophagus and adenocarcinoma diagnosis. Neural Comput Appl 32(3):759–775

    Article  Google Scholar 

  • Emary E, Zawbaa HM, Hassanien AE (2016) Binary ant lion approaches for feature selection. Neurocomputing 213:54–65

    Article  Google Scholar 

  • Eshelman LJ, Schaffer JD (1993) Real-coded genetic algorithms and interval-schemata. In: Foundations of genetic algorithms, vol 2, Elsevier, pp 187–202

  • Fleming M, Ravula S, Tatishchev SF, Wang HL (2012) Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol 3(3):153

    Google Scholar 

  • Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21

    Article  Google Scholar 

  • Haggar FA, Boushey RP (2009) Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg 22(4):191

    Article  Google Scholar 

  • Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Hewett DG, Kaltenbach T, Sano Y, Tanaka S, Saunders BP, Ponchon T, Soetikno R, Rex DK (2012) Validation of a simple classification system for endoscopic diagnosis of small colorectal polyps using narrow-band imaging. Gastroenterology 143(3):599–607

    Article  Google Scholar 

  • Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J et al (2018) Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21(4):653–660

    Article  Google Scholar 

  • Horie Y, Yoshio T, Aoyama K, Yoshimizu S, Horiuchi Y, Ishiyama A, Hirasawa T, Tsuchida T, Ozawa T, Ishihara S et al (2019) Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks. Gastrointest Endosc 89(1):25–32

    Article  Google Scholar 

  • Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425

    Article  Google Scholar 

  • Huang X, Suykens JA, Wang S, Hornegger J, Maier A (2018) Classification with truncated \(\ell\)1 distance kernel. IEEE Trans Neural Netw Learn Syst 29(5):2025–2030

    Article  MathSciNet  Google Scholar 

  • Jain AK, Duin RP, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37

    Article  Google Scholar 

  • Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recognit 38(12):2270–2285

    Article  Google Scholar 

  • Jiang B, Wang X, Leng C (2018) A direct approach for sparse quadratic discriminant analysis. J Mach Learn Res 19(1):1098–1134

    MathSciNet  MATH  Google Scholar 

  • Khan R, Van de Weijer J, Shahbaz Khan F, Muselet D, Ducottet C, Barat C (2013) Discriminative color descriptors. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2866–2873

  • Koh JEW, Hagiwara Y, Oh SL, Tan JH, Ciaccio EJ, Green PH, Lewis SK, Acharya UR (2019) Automated diagnosis of celiac disease using dwt and nonlinear features with video capsule endoscopy images. Future Gener Comput Syst 90:86–93

    Article  Google Scholar 

  • Leenhardt R, Vasseur P, Li C, Saurin JC, Rahmi G, Cholet F, Becq A, Marteau P, Histace A, Dray X et al (2019) A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy. Gastrointest Endosc 89(1):189–194

    Article  Google Scholar 

  • Ma Y, Guo G (2014) Support vector machines applications. Springer, Berlin

    Book  Google Scholar 

  • Mahmood F, Yang Z, Ashley T, Durr NJ (2018) Multimodal densenet. arXiv preprint arXiv:181107407

  • Mesejo P, Pizarro D, Abergel A, Rouquette O, Beorchia S, Poincloux L, Bartoli A (2016) Computer-aided classification of gastrointestinal lesions in regular colonoscopy. IEEE Trans Med Imaging 35(9):2051–2063

    Article  Google Scholar 

  • Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  • Mohandas K (2011) Colorectal cancer in India: controversies, enigmas and primary prevention. Indian J Gastroenterol 30(1):3–6

    Article  MathSciNet  Google Scholar 

  • Mouassa S, Bouktir T, Salhi A (2017) Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng Sci Technol Int J 20(3):885–895

    Google Scholar 

  • Nakagawa K, Ishihara R, Aoyama K, Ohmori M, Nakahira H, Matsuura N, Shichijo S, Nishida T, Yamada T, Yamaguchi S et al (2019) Classification for invasion depth of esophageal squamous cell carcinoma using a deep neural network compared with experienced endoscopists. Gastrointest Endosc 90(3):407–414

    Article  Google Scholar 

  • Organization WH (2018) Fact sheets: cancer. http://www.who.int/news-room/fact-sheets/detail/cancer. Accessed Sept 2020

  • Palmer ML, Herrera L, Petrelli NJ (1991) Colorectal adenocarcinoma in patients less than 40 years of age. Dis Colon Rectum 34(4):343–346

    Article  Google Scholar 

  • Passos LA, de Souza Jr LA, Mendel R, Ebigbo A, Probst A, Messmann H, Palm C, Papa JP (2019) Barrett’s esophagus analysis using infinity restricted Boltzmann machines. J Vis Commun Image Represent 59:475–485

    Article  Google Scholar 

  • Phan AV, Le Nguyen M, Bui LT (2017) Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems. Appl Intell 46(2):455–469

    Article  Google Scholar 

  • Pogorelov K, Ostroukhova O, Petlund A, Halvorsen P, De Lange T, Espeland HN, Kupka T, Griwodz C, Riegler M (2018) Deep learning and handcrafted feature based approaches for automatic detection of angiectasia. In: IEEE EMBS international conference on biomedical and health informatics (BHI), pp 365–368

  • Reuter M, Wolter FE, Peinecke N (2006) Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Comput Aided Des 38(4):342–366

    Article  Google Scholar 

  • Riaz F, Silva FB, Ribeiro MD, Coimbra MT (2012) Invariant gabor texture descriptors for classification of gastroenterology images. IEEE Trans Biomed Eng 59(10):2893–2904

    Article  Google Scholar 

  • Saha S, Mukherjee V (2018) A novel quasi-oppositional chaotic antlion optimizer for global optimization. Appl Intell 48(9):2628–2660

    Article  Google Scholar 

  • Scheppach W, Bresalier RS, Tytgat GN (2004) Gastrointestinal and liver tumors. Springer Science and Business Media, Berlin

    Book  Google Scholar 

  • Singh D, Singh B (2018) Feature weighting for improved classification of anuran calls. In: IEEE First international conference on secure cyber computing and communication (ICSCCC), pp 604–609

  • Singh D, Singh B (2019a) Hybridization of feature selection and feature weighting for high dimensional data. Appl Intell 49(4):1580–1596

    Article  Google Scholar 

  • Singh D, Singh B (2019b) Investigating the impact of data normalization on classification performance. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2019.105524

    Article  Google Scholar 

  • Singh D, Singh B, Kaur M (2020) Simultaneous feature weighting and parameter determination of neural networks using ant lion optimization for the classification of breast cancer. Biocybern Biomed Eng 40(1):337–351

    Article  Google Scholar 

  • Society AC (2018) Cancer facts & figures. https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2018/cancer-facts-and-figures-2018.pdf. Accessed Sept 2020

  • Souza L, Ebigbo A, Probst A, Messmann H, Papa JP, Mendel R, Palm C (2018) Barrett’s esophagus identification using color co-occurrence matrices. In: IEEE 31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), pp 166–173

  • Van De Weijer J, Schmid C (2006) Coloring local feature extraction. In: European conference on computer vision, Springer, pp 334–348

  • Van De Weijer J, Schmid C, Verbeek J, Larlus D (2009) Learning color names for real-world applications. IEEE Trans Image Process 18(7):1512–1523

    Article  MathSciNet  MATH  Google Scholar 

  • van der Sommen F, Zinger S, Curvers WL, Bisschops R, Pech O, Weusten BL, Bergman JJ, Schoon EJ et al (2016) Computer-aided detection of early neoplastic lesions in Barrett’s esophagus. Endoscopy 48(07):617–624

    Article  Google Scholar 

  • Vécsei A, Fuhrmann T, Liedlgruber M, Brunauer L, Payer H, Uhl A (2009) Automated classification of duodenal imagery in celiac disease using evolved fourier feature vectors. Comput Methods Program Biomed 95(2):S68–S78

    Article  Google Scholar 

  • Vispute M, Bhandari SH (2018) Automated polyp classification of gastroenteric lesion in colonoscopy videos. In: IEEE 5th International conference on signal processing and integrated networks (SPIN), pp 735–738

  • Xie W, Yu L, Xu S, Wang S (2006) A new method for crude oil price forecasting based on support vector machines. In: International conference on computational science, Springer, pp 444–451

  • Yao P, Wang H (2017) Dynamic adaptive ant lion optimizer applied to route planning for unmanned aerial vehicle. Soft Comput 21(18):5475–5488

    Article  Google Scholar 

  • Young J, Jenkins M, Parry S, Young B, Nancarrow D, English D, Giles G, Jass J (2007) Serrated pathway colorectal cancer in the population: genetic consideration. Gut 56(10):1453–1459

    Article  Google Scholar 

  • Zhang L, Jiang L, Li C, Kong G (2016) Two feature weighting approaches for naive Bayes text classifiers. Knowl Based Syst 100:137–144

    Article  Google Scholar 

  • Zhang R, Zheng Y, Mak TWC, Yu R, Wong SH, Lau JY, Poon CC (2017) Automatic detection and classification of colorectal polyps by transferring low-level CNN features from nonmedical domain. IEEE J Biomed Health Inform 21(1):41–47

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birmohan Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No human participants are involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Singh, B. Effective and efficient classification of gastrointestinal lesions: combining data preprocessing, feature weighting, and improved ant lion optimization. J Ambient Intell Human Comput 12, 8683–8698 (2021). https://doi.org/10.1007/s12652-020-02629-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02629-0

Keywords

Navigation