Skip to main content

Advertisement

Log in

PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

PM2.5 (particulate matter size less than 2.5 µm, also called Respirable suspended particulate matter (RSPM)) is causing devastating effects on various living entities and is deleterious more than any other pollutants. As ambient air pollution is a scourge to India, in the present research work, PM2.5 is considered and the current study aims to estimate surface level PM2.5 concentrations using satellite-derived aerosol optical depth (AOD) along with meteorological data obtained from reanalysis and in-situ measurements over two different cities of India, namely: Agra, a non-industrial site for a study period of 2011–2015 and Rourkela, a highly industrialized location for 2009–2013, respectively. From the average daily variation of PM2.5, the pollution levels are critical and exceeding the threshold values defined by the pollution control board for most of the days at both the sites. Satellite-observed AOD values were also found to be very high over Agra (average AOD 0.76–0.8) and Rourkela (average AOD 0.4–0.46) during the study period. The annual exceedance factor (AEF) values over Agra and Rourkela were found to be always > 1.5 which indicates the above critical state of pollution. Traditional simple linear regression method (Model I), multiple linear regression (Model II (a–e)), log-linear regression (Model III) and conditional based MLR (Model IV and Model V) methods are applied to estimate the PM2.5 concentrations over Taj for Agra region for a study period of 2011–2015 and Sonaparbat for Rourkela region for a study period of 2009–2013. The models obtained over Taj and Sonaparbat are applied to Rambagh (2011–2015) and Rourkela (2009–2013) sites for validation. The coefficient of determination (R) between observed and estimated values are found to be statistically significant for model II (e) during training and validation at both the sites and model performance is adequate. The Model II (e) can thus be used as a unified explanatory model for the estimation of PM2.5 over these two monitoring stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal A, Satsangi A, Lakhani A, Kumari KM (2020) Seasonal and spatial variability of secondary inorganic aerosols in PM2.5 at Agra: source apportionment through receptor models. Chemosphere 242:125–132

    Article  Google Scholar 

  • Agrawal M, Singh B, Rajput M, Marshall F, Bell JNB (2003) Effect of air pollution on peri-urban agriculture: a case study. Environ Pollut 126:323–329. https://doi.org/10.1016/S0269-7491(03)00245-8

    Article  Google Scholar 

  • Aw J, Kleeman MJ (2003) Evaluating the firstorder effect of intra-annual temperature variability on urban air pollution. J Geophy Res Atmospheres 108:(D12).

  • Badami MG (2005) Transport and urban air pollution in India. Environ Manage 36:195–204. https://doi.org/10.1007/s00267-004-0106-x

    Article  Google Scholar 

  • Census Report (2011) The registrar general and census commissioner. Government of India. https://www.censusindia.gov.in/2011census/population_enumeration.html. Accessed 15 Aug 2018

  • Chatterjee S, Hadi AS (2015) Regression analysis by example. Wiley, Hoboken

    MATH  Google Scholar 

  • Chelani AB (2019) Estimating PM2.5 concentration from satellite derived aerosol optical depth and meteorological variables using a combination model. Atmos Pol Res 10(3):847–857

    Article  Google Scholar 

  • Chen BB, Sverdlik LG, Imashev SA, Solomon PA, Lantz J, Schauer JJ, Shafer MM, Artamonova MS, Carmichael G (2013) Empirical relationship between particulate matter and aerosol optical depth over Northern Tien-Shan, Central Asia. Air Qual Atmos Heal 6:385–396. https://doi.org/10.1007/s11869-012-0192-5

    Article  Google Scholar 

  • Chitranshi S, Sharma SP, Dey S (2015) Satellite-based estimates of outdoor particulate pollution (PM10) for Agra City in northern India. Air Qual Atmos Heal 8:55–65. https://doi.org/10.1007/s11869-014-0271-x

    Article  Google Scholar 

  • Chowdhury S, Dey S (2016) Cause-specific premature death from ambient PM2.5 exposure in India: estimate adjusted for baseline mortality. Environ Int 91:283–290. https://doi.org/10.1016/j.envint.2016.03.004

    Article  Google Scholar 

  • Chu DA, Kaufman YJ, Ichoku C, Remer LA, Tanré D, Holben B (2002) Validation of MODIS aerosol optical depth retrieval over land. Geophys Res Lett 29:4–7. https://doi.org/10.1029/2001GL013205

    Article  Google Scholar 

  • CPCB report (2009) National ambient air quality standards (NAAQS). Gazette Notifcation, New Delhi

    Google Scholar 

  • CPCB Report (2013) Guidelines for the measurement of ambient air pollutants. http://mahenvis.nic.in/Pdf/Report/report_epm_NAAQMS%20.pdf. Accessed 17 Mar 2020

  • Dawson JP, Adams PJ, Pandis SN (2007) Sensitivity of PM2.5 to climate in the Eastern US: a modeling case study. Atmos Chem Phys 7:4295–4309. https://doi.org/10.5194/acp-7-4295-2007

    Article  Google Scholar 

  • Elangasinghe MA, Singhal N, Dirks KN, Salmond JA (2014) Development of an ANN-based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos Pollut Res 5:696–708

    Article  Google Scholar 

  • Gogikar P, Tyagi B (2016) Assessment of particulate matter variation during 2011–2015 over a tropical station Agra, India. Atmos Environ 147:11–21. https://doi.org/10.1016/j.atmosenv.2016.09.063

    Article  Google Scholar 

  • Gogikar P, Tyagi B, Padhan RR, Mahaling M (2018a) Particulate matter assessment using in situ observations from 2009 to 2014 over an industrial region of Eastern India. Earth Syst Environ. https://doi.org/10.1007/s41748-018-0072-8

    Article  Google Scholar 

  • Gogikar P, Tyagi B, Gorai AK (2018b) Seasonal prediction of particulate matter over the steel city of India using neural network models. Model Earth Syst Environ 5(1):227–243. https://doi.org/10.1007/s40808-018-0530-1

    Article  Google Scholar 

  • Grgurić S, Križan J, Gašparac G, Antonić O, Špirić Z, Mamouri R, Christodoulou A, Nisantzi A, Agapiou A, Themistocleous K, Fedra K (2014) Relationship between MODIS based aerosol optical depth and PM10 over Croatia. Open Geosci 6(1):2–16

    Article  Google Scholar 

  • Gupta P, Christopher SA (2009) Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: multiple regression approach. J Geophys Res Atmos 114:1–13. https://doi.org/10.1029/2008JD011496

    Article  Google Scholar 

  • Gupta P, Christopher SA, Wang J, Gehrig R, Lee Y, Kumar N (2006) Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos Environ 40:5880–5892. https://doi.org/10.1016/j.atmosenv.2006.03.016

    Article  Google Scholar 

  • https://www.sail.co.in/sites/default/files/investor/SAILAR201819.pdf. Accessed on 7 June 2020

  • Kavuri NC, Paul KK, Roy N (2013) Regression modeling of gaseous air pollutants and meteorological parameters in a steel city, Rourkela. ResJ Recent Sci 2:285–289

    Google Scholar 

  • Kavuri NC, Paul KK, Roy N (2015) TSP aerosol source apportionment in the urban region of the Indian steel city, Rourkela. Particuology 20:124–133

    Article  Google Scholar 

  • Kim K, Lee KH, Kim JI, Noh Y, Shin DH, Shin SK, Lee D, Kim J, Kim YJ, Song CH (2016) Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity. Chemosphere 143:32–40. https://doi.org/10.1016/j.chemosphere.2015.09.040

    Article  Google Scholar 

  • Kisi O, Parmar KS, Soni K, Demir V (2017) Modeling of air pollutants using least square support vector regression, multivariate adaptive regression spline, and M5 model tree models. Air Qual Atmos Health 10(7):873–883

    Article  Google Scholar 

  • Kleeman MJ (2007) A preliminary assessment of the sensitivity of air quality in California to global change. Clim Change. https://doi.org/10.1007/s10584-007-9351-3

    Article  Google Scholar 

  • Koelemeijer RBA, Homan CD, Matthijsen J (2006) Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmos Environ 40:5304–5315. https://doi.org/10.1016/j.atmosenv.2006.04.044

    Article  Google Scholar 

  • Kukkonen J, Pohjola M, Sokhi RS, Luhana L, Kitwiroon N, Fragkou L, Rantamäki M, Berge E, Odegaard V, Slordal LH, Denby B, Finardi S (2005) Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo. Atmos Environ 39:2759–2773. https://doi.org/10.1016/j.atmosenv.2004.09.090

    Article  Google Scholar 

  • Kulshrestha A, Satsangi PG, Masih J, Taneja A (2009) Metal concentration of PM2.5and PM10particles and seasonal variations in urban and rural environment of Agra. India Sci Total Environ 407:6196–6204. https://doi.org/10.1016/j.scitotenv.2009.08.050

    Article  Google Scholar 

  • Kumar N, Chu A, Foster A (2007) An empirical relationship between PM2.5 and aerosol optical depth in Delhi Metropolitan. Atmos Environ 41:4492–4503

    Article  Google Scholar 

  • Kumar S, Srinivas N, Sunil KA (2014) Monitoring and assessment of air quality with reference to dust particles (PM10 and PM2.5) in urban environment. Int J Res Engi Techno 3:2321–7308

    Google Scholar 

  • Lee HJ, Liu Y, Coull BA, Schwartz J, Koutrakis P (2011) A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations. Atmos Chem Phys 11:7991–8002. https://doi.org/10.5194/acp-11-7991-2011

    Article  Google Scholar 

  • Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res Atmos 112:1–21. https://doi.org/10.1029/2006JD007811

    Article  Google Scholar 

  • Liu Y, Sarnat JA, Kilaru V, Jacob DJ, Koutrakis P (2005) Estimating ground level PM2.5 in the eastern United States using satellite remote sensing. Environ Sci Technol 39:3269–3278. https://doi.org/10.1021/es049352m

    Article  Google Scholar 

  • Liu Y, Franklin M, Kahn R, Koutrakis P (2006) Using aerosol optical thickness to predict ground level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS. Remote Sens Environ 107:33–44

    Article  Google Scholar 

  • Liu Y, Franklin M, Kahn R, Koutrakis P (2007) Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: a comparison between MISR and MODIS. Remote Sens Environ 107:33–44. https://doi.org/10.1016/j.rse.2006.05.022

    Article  Google Scholar 

  • Liu Y, Paciorek CJ, Koutrakis P (2009) Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environ Health Perspect 117:886–892. https://doi.org/10.1289/ehp.0800123

    Article  Google Scholar 

  • Liu C, Henderson BH, Wang D, Yang X, Peng ZR (2016) A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai. China Sci Tot Environ 565:607–615

    Article  Google Scholar 

  • Liu BC, Binaykia A, Chang PC, Tiwari MK, Tsao CC (2017) Urban air quality forecasting based on multi-dimensional collaborative support vector regression (svr): a case study of beijing-tianjin-shijiazhuang. PLoS ONE 12(7):e0179763

    Article  Google Scholar 

  • Luo J, Du P, Samat A, Xia J, Che M, Xue Z (2017) Spatiotemporal pattern of PM2.5 concentrations in Mainland China and analysis of its influencing factors using geographically weighted regression. Sci Rep 7:1–14. https://doi.org/10.1038/srep40607

    Article  Google Scholar 

  • Ma Z, Hu X, Sayer AM, Levy R, Zhang Q, Xue Y, Tong S, Bi J, Huang L, Liu Y (2016) Satellite-based spatiotemporal trends inPM2.5 concentrations: China, 2004–2013. Environ Health Perspect 124:184–192

    Article  Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2012) Introduction to linear regression analysis, vol 821. Wiley, Hoboken

    MATH  Google Scholar 

  • Niranjan K, Sreekanth V, Madhavan BL, Moorthy KK (2007) Aerosol physical properties and radiative forcing at the outflow region from the Indo-Gangetic plains during typical clear and hazy periods of wintertime. Geophys Res Lett 34:L19805. https://doi.org/10.1029/2007GL031224

    Article  Google Scholar 

  • Paciorek CJ, Liu Y (2009) Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter. Environ Heal Pers 117(6):904–909

    Article  Google Scholar 

  • Pant P, Lal RM, Guttikunda SK, Russell AG, Nagpure AS, Ramaswami A, Peltier RE (2019) Monitoring particulate matter in India: recent trends and future outlook. Air Qual Atmos Heal 12(1):45–58

    Article  Google Scholar 

  • Park ME, Song CH, Park RS, Lee J, Kim J, Lee S, Woo JH, Carmichael GR, Eck TF, Holben BN, Lee SS, Song CK, Hong Y (2014) New approach to monitor transboundary particulate pollution over Northeast Asia. Atmos Chem Phys 14:659–674. https://doi.org/10.5194/acp-14-659-2014

    Article  Google Scholar 

  • Phanikumar DV, Niranjan Kumar K, Shukla KK, Joshi H, Venkat Ratnam M, Naja M, Reddy K (2014) Signatures of Rossby wave modulations in aerosol optical depth over the central Himalayan region. Ann Geophys 32:175–180. https://doi.org/10.5194/angeo-32-175-2014

    Article  Google Scholar 

  • Pipal AS, Satsangi PG, Tiwari S, Taneja A (2014) Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2.5and PM10) over Agra. India Aerosol Air Qual Res 14:1685–1700. https://doi.org/10.4209/aaqr.2014.01.0017

    Article  Google Scholar 

  • Platnick S, Hubanks P, Meyer K, King MD (2015) MODIS atmosphere L3 monthly product (08_L3). NASA MODIS adaptive processing system, goddard space flight center https://dx.doi.org/10.5067/MODIS/MOD08_M3.006 (Terra) https://dx.doi.org/10.5067/MODIS/MYD08_M3.006 (Aqua)

  • Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973. https://doi.org/10.1175/JAS3385.1

    Article  Google Scholar 

  • Sah D, Verma PK, Kandikonda MK, Lakhani A (2019) Pollution characteristics, human health risk through multiple exposure pathways, and source apportionment of heavy metals in PM10 at Indo-Gangetic site. Urban Clim 27:149–162

    Article  Google Scholar 

  • Schaap M, Apituley A, Timmermans RMA, Koelemeijer RBA, De Leeuw G (2009) Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos Chem Phys 9:909–925. https://doi.org/10.5194/acp-9-909-2009

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics. A Wiley-Inter Science Publication, Hoboken

    Google Scholar 

  • Shaw N, Gorai AK (2018) Study of aerosol optical depth using satellite data (MODIS Aqua) over Indian Territory and its relation to particulate matter concentration. Environ Dev Sustain. https://doi.org/10.1007/s10668-018-0198-8

    Article  Google Scholar 

  • Song W, Jia H, Huang J, Zhang Y (2014) A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China. Remote Sens Environ 154:1–7. https://doi.org/10.1016/j.rse.2014.08.008

    Article  Google Scholar 

  • Soni M, Payra S, Verma S (2018) Particulate matter estimation over a semi arid region Jaipur, India using satellite AOD and meteorological parameters. Atmos Pollut Res 9:949–958. https://doi.org/10.1016/j.apr.2018.03.001

    Article  Google Scholar 

  • Sotoudeheian S, Arhami M (2014) Estimating ground-level PM10 using satellite remote sensing and ground-based meteorological measurements over Tehran. J Environ Heal Sci Engi 12(1):1–13. https://doi.org/10.1186/s40201-014-0122-6

    Article  Google Scholar 

  • Sreekanth V, Mahesh B, Niranjan K (2017) Satellite remote sensing of fine particulate air pollutants over Indian mega cities. Adv Space Res 60(10):2268–2276

    Article  Google Scholar 

  • Tai APK, Mickley LJ, Jacob DJ (2010) Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: implications for the sensitivity of PM2.5 to climate change. Atmos Environ 44:3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060

    Article  Google Scholar 

  • Tang CH, Coull BA, Schwartz J, Di Q, Koutrakis P (2017) Trends and spatial patterns of fine-resolution aerosol optical depth–derived PM2.5 emissions in the Northeast United States from 2002 to 2013. J Air Waste Manag Assoc 67:64–74. https://doi.org/10.1080/10962247.2016.1218393

    Article  Google Scholar 

  • Tian J, Chen D (2010) A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements. Remote Sens Environ 114:221–229. https://doi.org/10.1016/j.rse.2009.09.011

    Article  Google Scholar 

  • Trang NH, Tripathi NK (2014) Spatial correlation analysis between particulate matter 10 (PM10) hazard and respiratory diseases in chiang mai province, Thailand. Int Arch Photogramm Remote Sens Spat Inf Sci. https://doi.org/10.5194/isprsarchives-XL-8-185-2014

    Article  Google Scholar 

  • Van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ (2010) Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application. Environ Health Perspect 118:847–855. https://doi.org/10.1289/ehp.0901623

    Article  Google Scholar 

  • Wang J, Martin ST (2007) Satellite characterization of urban aerosols: importance of including hygroscopicity and mixing state in the retrieval algorithms. J Geophys Res Atmos 112:1–18. https://doi.org/10.1029/2006JD008078

    Article  Google Scholar 

  • Wang J, Ogawa S (2015) Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. Int J Environ Res Public Health 12:9089–9101. https://doi.org/10.3390/ijerph120809089

    Article  Google Scholar 

  • World Health Organization (2018) Air pollution and child health: prescribing clean air summary. WHO, Geneva, p 38

    Google Scholar 

  • Xing YF, Xu YH, Shi MH, Lian YX (2016) The impact of PM2.5 on the human respiratory system. J Thoracic Dis 8(1):E69

    Google Scholar 

  • Yap XQ, Hashim M (2013) A robust calibration approach for PM10 prediction from MODIS aerosol optical depth. Atmos Chem Phys 13:3517–3526. https://doi.org/10.5194/acp-13-3517-2013

    Article  Google Scholar 

  • Yeganeh B, Hewson MG, Clifford S, Knibbs LD, Morawska L (2017) A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques. Environ Model Softw 88:84–92. https://doi.org/10.1016/j.envsoft.2016.11.017

    Article  Google Scholar 

  • You W, Zang Z, Zhang L, Li Z, Chen D, Zhang G (2015) Estimating ground-level PM10 concentration in northwestern China using geographically weighted regression based on satellite AOD combined with CALIPSO and MODIS fire count. Remote Sens Environ 168:276–285

    Article  Google Scholar 

  • Zhang Q, Jiang X, Tong D, Davis SJ, Zhao H, Geng G, Feng T, Zheng B, Lu Z, Streets DG, Ni R, Brauer M, Van Donkelaar A, Martin RV, Huo H, Liu Z, Pan D, Kan H, Yan Y, Lin J, He K, Guan D (2017) Transboundary health impacts of transported global air pollution and international trade. Nature 543:705–709. https://doi.org/10.1038/nature21712

    Article  Google Scholar 

Download references

Acknowledgements

Ms Priyanjali Gogikar would like to acknowledge the National Institute of Technology Rourkela for providing fellowship for conducting research. Authors are thankful to Odisha State Pollution Control Board (OSPCB) for providing the datasets used in the present study. Authors also appreciate the constructive suggestions by anonymous reviewers and editor to improve the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhishma Tyagi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogikar, P., Tripathy, M.R., Rajagopal, M. et al. PM2.5 estimation using multiple linear regression approach over industrial and non-industrial stations of India. J Ambient Intell Human Comput 12, 2975–2991 (2021). https://doi.org/10.1007/s12652-020-02457-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02457-2

Keywords

Navigation