Skip to main content
Log in

Uncertain random quadratic bottleneck assignment problem

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Uncertain random expected value simulation is one of the most important techniques to solve uncertain random optimization problems where random variables coexist with uncertain variables. A general simulation algorithm is designed to estimate the uncertain random expected value. Furthermore, an uncertain random quadratic bottleneck assignment problem is proposed and an uncertain random expected value model is presented. An algorithm is designed to find a lower bound of the uncertain random quadratic bottleneck assignment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmadzade H, Sheng YH, Esfahani M (2017) On the convergence of uncertain random sequences. Fuzzy Optim Decis Making 16(2):205–220

    MathSciNet  MATH  Google Scholar 

  • Albrecher H (2005) A note on the asymptotic behavior of bottleneck problems. Oper Res Lett 33(2):183–186

    MathSciNet  MATH  Google Scholar 

  • Burkard RE (1974) Quadratische bottleneck probleme. Oper Res Verf 18(1):26–41

    Google Scholar 

  • Burkard RE, Rissner R (2011) Polynomially solvable special cases of the quadratic bottleneck assignment problem. J Comb Optim 22(4):845–856

    MathSciNet  MATH  Google Scholar 

  • Burkard RE, Fincke U (1982) On random quadratic bottleneck assignment problems. Math Progr 23(1):227–232

    MathSciNet  MATH  Google Scholar 

  • Burkard RE, Fincke U (1985) Probabilistic asymptotic properties of some combinatorial optimization problems. Discrete Appl Math 12(1):21–29

    MathSciNet  MATH  Google Scholar 

  • Chen XW, Kar S, Ralescu D (2012) Cross-entropy measure of uncertain variables. Inf Sci 201:53–60

    MathSciNet  MATH  Google Scholar 

  • Dalman H (2018) Uncertain programming model for multi-item solid transportation problem. Int J Mach Learn Cybern 9(4):559–567

    Google Scholar 

  • Gao Y, Yang L, Li S, Kar S (2015) On distribution function of the diameter in uncertain graph. Inf Sci 296:61–74

    MathSciNet  MATH  Google Scholar 

  • Hosseini S, Wadbro E (2016) Connectivity reliability in uncertain networks with stability analysis. Expert Syst Appl 57:337–344

    Google Scholar 

  • Keller H, Wirsching G (1998) Bottleneck quadratic assignment problems and the bandwidth problem. Asia Pac J Oper Res 15(2):169–177

    MathSciNet  MATH  Google Scholar 

  • Koopmans T, Beckmann M (1957) Assignment problems and the location of economic activities. Econometrica 25(1):53–76

    MathSciNet  MATH  Google Scholar 

  • Liu B (2015) Uncertainty Theory (fourth). Springer, Berlin

    Google Scholar 

  • Liu YH (2013a) Uncertain random variables: a mixture of uncertainty and randomness. Soft Comput 17(4):625–634

    MATH  Google Scholar 

  • Liu YH (2013b) Uncertain random programming with applications. Fuzzy Optim Decis Making 12(2):153–169

    MathSciNet  MATH  Google Scholar 

  • Mehralizade R, Amini M, Gildeh BS, Ahmadzade H (2018) Chance order of two uncertain random variables. J Uncertain Syst 12(2):105–122

    Google Scholar 

  • Qin ZF, Kar S (2013) Single-period inventory problem under uncertain environment. Appl Math Comput 219(18):9630–9638

    MathSciNet  MATH  Google Scholar 

  • Steinberg L (1961) The backboard wiring problem: a placement algorithm. SIAM Rev 3(1):37–50

    MathSciNet  MATH  Google Scholar 

  • Veresnikov GS, Pankova LA, Pronina VA (2017) Uncertain programming in preliminary design of technical systems with uncertain parameters. Procedia Comput Sci 103:36–43

    Google Scholar 

  • Yang XF, Gao JW (2017) Bayesian equilibria for uncertain bimatrix game with asymmetric information. J Intell Manuf 28(3):515–525

    Google Scholar 

  • Yao K, Gao JW (2015) Uncertain random alternating renewal process with application to interval availability. IEEE Trans Fuzzy Syst 23(5):1333–1342

    Google Scholar 

  • Zabudskii GG, Lagzdin AY (2010) Polynomial algorithms for solving the quadratic assignment problem on networks. Comp Math Math Phys 50(11):1948–1955

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. U1404701), the Scholarship Program of China Scholarship Council (Grant no. 201509895007), the Scientific Research Foundation of the Henan University of Technology (Grant no. 2017RCJH11), the Innovation Team Project of Philosophy and Social Sciences in Higher Education Institutions of Henan Province (Grant no. 2019-CXTD-04) and the Consulting Program of Philosophy and Social Sciences in Henan Province (Grant no. 2019JC07)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibo Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Example 1

Assume that \(\eta _{1}\sim U(1, 2)\) and \(\eta _{2}\sim U(2, 4)\) are independent random variables, and assume that \(\tau _{1}\sim \L (10, 20)\) and \(\tau _{2}\sim \L (3, 6)\) are independent uncertain variables . Then, \(\xi =\displaystyle \frac{\eta _{1} \vee \tau _{1}}{\eta _{2}\wedge \tau _{2}}\) is an uncertain random variable. Next, we calculate the expected value of \(\xi \).

The inverse uncertainty distribution of \(\tau _{1}\) is \(\Phi ^{ -1}_{1}(\alpha )= (1-\alpha )10 +\alpha 20\) and the inverse uncertainty distribution of \(\tau _{2}\) is \(\Phi ^{ -1}_{2}(1-\alpha )=\alpha 3 +(1-\alpha )6 \). The probability distributions of \(\eta _{1}\) and \(\eta _{2}\) are

$$\begin{aligned} \Psi _1(y_1) = \left\{ \begin{array}{ll} 0 &{}\quad if\; y_1 \le 1,\\ {y_1-1} &{}\quad if \; 1 \le y_1 \le 2,\\ 1 &{}\quad if \; y_1 \ge 2, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} \Psi _2(y_2) = \left\{ \begin{array}{ll} 0 &{}\quad if\; y_2 \le 2,\\ \displaystyle {\frac{y_2-2}{2}} &{} \quad if \; 2 \le y_2 \le 4,\\ 1 &{}\quad if \; y_2 \ge 4. \end{array} \right. \end{aligned}$$

The expected value of \(\xi \) is formulated as

$$\begin{aligned} \begin{aligned} E[\xi ]&=\frac{1}{2}\int _{2}^{4}\int _1^{2}\int _0^1f(y_1,y_2, \Phi ^{ -1}_{1}(\alpha ),\\&\quad \Phi ^{ -1}_{2}(1-\alpha ))\mathrm{d}\alpha \mathrm{d}\Psi _1(y_1)\mathrm{d}\Psi _2(y_2)\\&=\frac{1}{2}\int _{2}^{4}\int _1^2\int _0^1 \frac{y_1\vee (10+10\alpha ) }{ y_2\wedge (6-3\alpha )}\mathrm{d}\alpha \mathrm{d}y_1 \mathrm{d}y_2.\\ \end{aligned} \end{aligned}$$

For simplicity, we set \(N=100\) and \(K=100\). Let random variable \(\eta _{1}\) take values in \(\{y_1|y_1=1+0.01\cdot i, \; \mathrm {for}\;\)i\(=1, 2,\ldots , 100 \}\) and random variable \(\eta _{2}\) take values in \(\{y_2|y_2=2+0.02\cdot j, \; \mathrm {for}\;\)j=\(1, 2,\ldots , 100 \}\). \(\alpha \) take values in \(\{\alpha |\alpha =0.01\cdot k, \; \mathrm {for}\;\)k=\(1, 2,\ldots , 100 \}\).

Then, we get

$$\begin{aligned} \begin{aligned} E[\xi ]=\frac{1}{2}\sum \limits _{i=1}^{100}\sum \limits _{j=1}^{100} \sum \limits _{k=1}^{100}\frac{(1+0.01\cdot i)\vee [(10+10(0.01\cdot k)]}{(2+0.02\cdot j)\wedge [6-3(0.01\cdot k)]}\cdot 0.01\cdot 0.01\cdot 0.02.\\ \end{aligned} \end{aligned}$$

The value of \(f(y_1,y_2,\Phi ^{ -1}_{1}(\alpha ),\Phi ^{ -1}_{2}(1-\alpha ))\) is listed in the Table 3.

Table 3 Value of \(f(y_1,y_2,\Phi ^{ -1}_{1}(\alpha ),\Phi ^{ -1}_{2}(1-\alpha ))\)

We approximate the value of the integral using numerical integral technique and get \(E(\xi )=5.24\). From this example, we can see that the algorithm is easy to implement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S. Uncertain random quadratic bottleneck assignment problem. J Ambient Intell Human Comput 11, 3259–3264 (2020). https://doi.org/10.1007/s12652-019-01510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01510-z

Keywords

Navigation