Skip to main content
Log in

A new multi-criteria decision-making method based on intuitionistic fuzzy information and its application to fault detection in a machine

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Intuitionistic Fuzzy Sets (IFSs) introduced by Atanassov are well suitable to deal with hesitancy and vagueness. In this communication, a new bi-parametric exponential information measure based on IFSs is introduced. Besides establishing its validity, some of its major properties are also discussed. Further, a new multi-criteria decision-making method based on the proposed IF measure and weighted correlation coefficients is introduced. The proposed method is utilized in detecting the fault in a machine that is not working properly through a numerical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96

    Article  Google Scholar 

  • Atanassov KT (1999) Intuitionistic fuzzy sets. Physica, Heidelberg

    Book  Google Scholar 

  • Boekee DE, Vander Lubbe JCA (1980) The R-norm information measure. Inf Control 45:136–155

    Article  MathSciNet  Google Scholar 

  • Burillo P, Bustince H (2001) Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets Syst 118:305–316

    MathSciNet  MATH  Google Scholar 

  • Chen T, Chuang YH (2018) Fuzzy and nonlinear programming approach for optimizing the performance of ubiquitous hotel recommendation. J Ambient Intell Human Comput 9:275–284. https://doi.org/10.1007/s12652-015-0335-2

    Article  Google Scholar 

  • Chen T, Li C (2010) Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis. Inf Sci 180:4207–4222

    Article  Google Scholar 

  • Choo EU, Wedley WC (1985) Optimal criterion weights in repetitive multi criteria decision making. J Oper Res Soc 36:983–992

    Article  Google Scholar 

  • De Luca A, Termini S (1972) A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf Control 20:301–312

    Article  Google Scholar 

  • Deng Y (2012) D Numbers: theory and applications. J Inf Comput Sci 9(9):2421–2428

    Google Scholar 

  • Dubois D, Prade H (1990) Rough fuzzy sets and fuzzy rough sets. Int J Gen Syst 17:191–209

    Article  Google Scholar 

  • Fan ZP (1996) Complicated multiple attribute decision making: Theory and applications. Ph.D. Dissertation, Northeastern university, Shenyang China

  • Gerstenkorn T, Manko J (1991) Correlation of intuitionistic fuzzy sets. Fuzzy Sets Syst 44:39–43

    Article  MathSciNet  Google Scholar 

  • Grattan-Guiness I (1975) Fuzzy membership mapped onto interval and many-valued quantities. Z Math Logik Grundladen Math 22:149–160

    Article  MathSciNet  Google Scholar 

  • Gupta P, Arora HD, Tiwari P (2016) Generalized entropy for intuitionistic fuzzy sets. Malays J Math Sci 10(2):209–220

    MathSciNet  Google Scholar 

  • Gupta P, Arora HD, Tiwari P (2014) On some generalised exponential entropy for fuzzy sets. In: Proceeding of 3rd international conference on reliability, infocom technologies and optimization (ICRITO) (trends and future directions), pp 309-311

  • Havdra JH, Charvat F (1967) Quantification method classification process: concept of structral \(\alpha\)-entropy. Kybernetika 3:30–35

    MathSciNet  Google Scholar 

  • Hsieh MY, Hsu YC, Lin CT (2018) Risk assessment in new software development projects at the front end: a fuzzy logic approach. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-016-0372-5

    Article  Google Scholar 

  • Hu Y-P, You X-Y, Wang L, Liu H-C (2018) An intergrated approach for failure mode and effect analysis based on uncertain linguistic GRA-Topsis method. Soft Comput. https://doi.org/10.1007/s00500-018-3480-7

    Article  Google Scholar 

  • Hung WL, Yang MS (2006) Fuzzy entropy on intuitionistic fuzzy sets. Int J Intell Syst 21:443–451

    Article  Google Scholar 

  • Hwang CL, Lin MJ (1987) Group decision making under multiple criteria: methods and applications. Springer, Berlin

    Book  Google Scholar 

  • Jahn KU (1975) Intervall-wertige Mengen. Math Nach 68:115–132

    Article  MathSciNet  Google Scholar 

  • Joshi R, Kumar S (2016) \((R, S)\)-norm information measure and a relation between coding and questionnaire theory. Open Syst Inf Dyn. https://doi.org/10.1142/S1230161216500153

    Article  MathSciNet  MATH  Google Scholar 

  • Joshi R, Kumar S (2017a) A new exponential fuzzy entropy of order-\((\alpha, \beta )\) and its application in multiple attribute decision making. Commun Math Stat 5(2):213–229

    Article  MathSciNet  Google Scholar 

  • Joshi R, Kumar S (2017b) Parametric \((R, S)\)-norm entropy on intuitionistic fuzzy sets with a new approach in multiple attribute decision making. Fuzzy Inf Eng 9(2):181–203. https://doi.org/10.1016/j.fiae.2017.06.004

    Article  MathSciNet  Google Scholar 

  • Joshi R, Kumar S (2017d) A new intuitionistic fuzzy entropy of order-\(\alpha\) with applications in multiple attribute decision making. Adv Intell Syst Comput 546:212–219

    Google Scholar 

  • Joshi R, Kumar S (2018a) An intuitionistic fuzzy \((\delta, \gamma )\)-norm entropy with its application in supplier selection problem. Comput Appl Math. https://doi.org/10.1007/s40314-018-0656-9

    Article  MathSciNet  MATH  Google Scholar 

  • Joshi R, Kumar S (2018b) An intuitionistic fuzzy information measure of order \((\alpha, \beta )\) with a new approach in supplier selection problems using an extended VIKOR method. J Appl Math Comput. https://doi.org/10.1007/s12190-018-1202-z

    Article  Google Scholar 

  • Joshi R, Kumar S (2018c) A new parametric intuitionistic fuzzy entropy and its applications in multiple attribute decision making. Int J Appl Comput Math. https://doi.org/10.1007/s40819-018-0486-x

    Article  MathSciNet  MATH  Google Scholar 

  • Joshi R, Kumar S (2018d) A new weighted \((\alpha, \beta )\)-norm information measure with applications in coding theory. Phys Stat Mech Appl. https://doi.org/10.1016/j.physa.2018.07.015

    Article  Google Scholar 

  • Joshi R, Kumar S (2018e) A novel fuzzy decision making method using entropy weights based correlation coefficients under intuitionistic fuzzy environment. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-018-0538-8

    Article  Google Scholar 

  • Joshi R, Kumar S, Gupta D, Kaur H (2017c) A Jensen-\(\alpha\)-norm dissimilarity measure for intuitionistic fuzzy sets and its applications in multiple attribute decision making. Int J Fuzzy Syst. https://doi.org/10.1007/s40815-017-0389-8

    Article  Google Scholar 

  • Koop GJ, Johnson JG (2010) The use of multiple reference points in risky decision making. J Behav Dec Making. https://doi.org/10.1002/bdm.713

    Article  Google Scholar 

  • Li DF (2010) A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Comput Math Appl 60(6):1557–1570

    Article  MathSciNet  Google Scholar 

  • Li X, Chen X (2017) Value determination method based on multiple reference points under a trapezoidal intuitionistic fuzzy environment. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.11.003

    Article  Google Scholar 

  • Li X, Chen X (2018) D-intuitionistic hesitant fuzzy sets and their application in multiple attribute decision making. Cognit Comput 10(3):496–505

    Article  Google Scholar 

  • Li F, Lu ZH, Cai LJ (2003) The Entropy of Vague Sets based on Fuzzy Sets. J Huazhong Univ Sci Tech 31(1):24–25

    Article  MathSciNet  Google Scholar 

  • Liu H, Wang G (2007) Multi-criteria decision-making methods based on intutionistic fuzzy sets. Eur J Oper Res 179:220–233

    Article  Google Scholar 

  • Liu H-C, You J-X, Duan C-Y (2019) An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int J Prod Econ 207:163–172

    Article  Google Scholar 

  • Liu H-C, Wang L-E, Li Z-W, Hu Y-P (2019) Improving risk evaluation in FMEA with cloud model and hierarchical TOPSIS method. IEEE Trans Fuzzy Syst 27(1):84–95

    Article  Google Scholar 

  • Mo J, Huang H-L (2018) Dual generalized nonnegative normal neutrosophic bonferroni mean operators and their application in multiple attribute decision making. Information. https://doi.org/10.3390/info9080201

    Article  Google Scholar 

  • Pal NR, Pal SK (1988) Object background segmentation using new definition of entropy. In: Proceedings Int Conf Syst. Man, Cybern, Beijing, China, pp 773–776

  • Rainer JJ, Cobos-Guzman S, Galan R (2018) Decision making algorithm for an autonomous guide-robot using fuzzy logic. J Ambient Intell Human Comput. https://doi.org/10.1007/s12652-017-0651-9

    Article  Google Scholar 

  • Renyi A (1961) On measures of entropy and information. In: Proceedings of \(4^{th}\) Barkley symp. on Math. Stat. and Probability, University of California Press, pp 547–561

  • Riaz M, Tehrim ST (2019) Cubic bipolar fuzzy ordered weighted geometric aggregation operators and their application using internal and external cubic bipolar fuzzy data. Comp Appl Math. https://doi.org/10.1007/s40314-019-0843-3

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty TL (1980) The analytical hierarchy process. Mc-graw hill, New York

    MATH  Google Scholar 

  • Sattarpour T, Nazarpour D, Golshannavaz S et al (2018) A multi-objective hybrid GA and TOPSIS approach for sizing and siting of DG and RTU in smart distribution grids. J Ambient Intell Hum Comput. https://doi.org/10.1007/s12652-016-0418-8

    Article  Google Scholar 

  • Shannon CE (1948) The mathematical theory of communication. Bell Syst Tech J 27(379–423):623–656

    Article  MathSciNet  Google Scholar 

  • Szmidt E, Kacprzyk J (2002) Using intuitionistic fuzzy sets in group decision-making. Control Cybern 31:1037–1054

    MATH  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzman–Gibbs statistics. J Stat Phys 52:480–487

    Article  Google Scholar 

  • Verma RK, Sharma BD (2014) On intuitionistic fuzzy entropy of order-\(\alpha\). Adv Fuzzy Syst 789890:8

    MathSciNet  MATH  Google Scholar 

  • Vlachos IK, Sergiadis GD (2007) Intuitionistic fuzzy information- Applications to pattern recognition. Pattern Recognit Lett 28(2):197–206

    Article  Google Scholar 

  • Wachowicz T, Brzostowski J, Roszkowska E (2012) Reference points-based methods in supporting the evaluation of negotiation offers. Oper Res Decis. https://doi.org/10.5277/ord120407

    Article  MathSciNet  MATH  Google Scholar 

  • Wang J, Wang P (2012) Intutionistic linguistic fuzzy multi-criteria decision-making method based on intutionistic fuzzy entropy. Control Decis 27:1694–1698

    MathSciNet  Google Scholar 

  • Xu ZS, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433

    Article  MathSciNet  Google Scholar 

  • Ye J (2010) Fuzzy decision-making method based on the weighted correlation coefficient under intuitionistic fuzzy environment. Eur J Oper Res 205:202–204

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Comput 8:338–353

    MATH  Google Scholar 

  • Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning-I. Inf Sci 8:199–249

    Article  MathSciNet  Google Scholar 

  • Zeng W, Yu F, Yu X, Chen H, Wu S (2009) Entropy on intuitionistic fuzzy set based on similarity measure. Int J Innov Comput Inf Control 5(12):4737–4744

    Google Scholar 

  • Zhao N, Xu Z (2016) Entropy measures for interval-valued intuitionistic fuzzy information from a comparative perspective and their application to decision making. Informatica 27(1):203–228

    Article  Google Scholar 

  • Zhu B, Xu Z (2018) Probability-Hesitant fuzzy sets and the representation of preference relations. Technol Econ Dev Econ 24(3):1029–1040

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the editor and anonymous reviewers for their constructive and valuable suggestions to improve this manuscript and for enhancing mine knowledge through their precious comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Now, we prove the Theorems (5) and (6).

Proof of Theorem (5):

To prove the theorem, we bifurcate the universe of discourse \(X=(o_1, o_2, \ldots , o_n)\) as follows:

$$\begin{aligned} X_1&=\{o_i\in X| D(o_i)\subseteq E(o_i)\}~\text {and}\nonumber \\ X_2&=\{o_i\in X| D(o_i)\supseteq E (o_i)\}. \end{aligned}$$
(53)

This implies that for all \(o_i\in X_1\), \(\mu _D (o_i)\le \mu _E (o_i)\) and for all \(o_i\in X_2\), \(\mu _E (o_i)\le \mu _D (o_i)\), where \(\mu _D (o_i)\) and \(\mu _E (o_i)\) denote the membership degrees of D and B respectively. This gives

$$\begin{aligned}&\text {For all} ~ o_i\in X_1; ~\mu _{D\cup E} (o_i)=\max {(\mu _D (o_i), \mu _E (o_i))}=\mu _E (o_i);\nonumber \\&\quad \text {and}~ \mu _{D\cap E} (o_i)=\min {(\mu _D (o_i), \mu _E (o_i))}=\mu _D (o_i). \end{aligned}$$
(54)

Similarly,

$$\begin{aligned}&\text {For all} ~o_i\in X_2; \mu _{D\cup E} (o_i)=\max {(\mu _D (o_i), \mu _E (o_i))}=\mu _D (o_i);\nonumber \\&\quad ~\text {and}~ \mu _{D\cap E} (o_i)=\min {(\mu _D (o_i), \mu _E (o_i))}=\mu _E (o_i). \end{aligned}$$
(55)

Now, to prove theorem (5), consider

$$\begin{aligned}&H_\rho ^\varsigma (D\cup E)+H_\rho ^\varsigma (D\cap E)=\sum _{i=1}^n\frac{1}{n\left( 2^{1-\rho }e^{1-2^{-\rho }}-2^{1-\varsigma }e^{1-2^{-\varsigma }}\right) } \nonumber \\&\quad \times \left[ \begin{array}{c} \left( \begin{array}{c} \left( \left( \frac{\mu _{D\cup E} (o_i)+1-\nu _{D\cup E} (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\mu _{D\cup E} (o_i)+1-\nu _{D\cup E} (o_i)}{2}\right) ^\rho }\right. \\ \left. +\left( \frac{\nu _{D\cup E} (o_i)+1-\mu _{D\cup E} (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\nu _{D\cup E} (o_i)+1-\mu _{D\cup E} (o_i)}{2}\right) ^\rho }\right) \\ -\left( \left( \frac{\mu _{D\cup E} (o_i)+1-\nu _{D\cup E} (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\mu _{D\cup E} (o_i)+1-\nu _{D\cup E} (o_i)}{2}\right) ^\varsigma }\right. \\ \left. +\left( \frac{\nu _{D\cup E} (o_i)+1-\mu _{D\cup E} (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\nu _{D\cup E} (o_i)+1-\mu _{D\cup E} (o_i)}{2}\right) ^\varsigma }\right) \end{array} \right) \\ +\left( \begin{array}{c} \left( \left( \frac{\mu _{D\cap E} (o_i)+1-\nu _{D\cap E} (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\mu _{D\cap E} (o_i)+1-\nu _{D\cap E} (o_i)}{2}\right) ^\rho }\right. \\ \left. +\left( \frac{\nu _{D\cap E} (o_i)+1-\mu _{D\cap E} (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\nu _{D\cap E} (o_i)+1-\mu _{D\cap E} (o_i)}{2}\right) ^\rho }\right) \\ -\left( \left( \frac{\mu _{D\cap E} (o_i)+1-\nu _{D\cap E} (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\mu _{D\cap E} (o_i)+1-\nu _{D\cap E} (o_i)}{2}\right) ^\varsigma }\right. \\ \left. +\left( \frac{\nu _{D\cap E} (o_i)+1-\mu _{D\cap E} (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\nu _{D\cap E} (o_i)+1-\mu _{D\cap E} (o_i)}{2}\right) ^\varsigma }\right) \end{array} \right) \end{array} \right] . \end{aligned}$$
(56)

Using (53), (54) and (55), (56) gives

$$\begin{aligned}&H_\rho ^\varsigma (D\cup E)+H_\rho ^\varsigma (D\cap E)=\sum _{i=1}^n\frac{1}{n\left( 2^{1-\rho }e^{1-2^{-\rho }}-2^{1-\varsigma }e^{1-2^{-\varsigma }}\right) } \nonumber \\&\quad \times \left[ \begin{array}{c} \sum _{X_1}\left( \begin{array}{c} \left( \left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\rho }\right. \\ \left. +\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\rho }\right) \\ -\left( \left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\varsigma }\right. \\ \left. +\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\varsigma }\right) \end{array} \right) \\ +\sum _{X_2}\left( \begin{array}{c} \left( \left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\rho }\right. \\ \left. +\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\rho }\right) \\ -\left( \left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\varsigma }\right. \\ \left. +\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\varsigma }\right) \end{array} \right) \\ +\sum _{X_1}\left( \begin{array}{c} \left( \left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\rho }\right. \\ \left. +\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\rho }\right) \\ -\left( \left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\mu _D (o_i)+1-\nu _D (o_i)}{2}\right) ^\varsigma }\right. \\ \left. +\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\nu _D (o_i)+1-\mu _D (o_i)}{2}\right) ^\varsigma }\right) \end{array} \right) \\ +\sum _{X_2}\left( \begin{array}{c} \left( \left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\rho }\right. \\ \left. +\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\rho e^{1-\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\rho }\right) \\ -\left( \left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\mu _E (o_i)+1-\nu _E (o_i)}{2}\right) ^\varsigma }\right. \\ \left. +\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\varsigma e^{1-\left( \frac{\nu _E (o_i)+1-\mu _E (o_i)}{2}\right) ^\varsigma }\right) \end{array} \right) \end{array} \right] . \end{aligned}$$
(57)

On computing (57), we get

$$\begin{aligned} H_\rho ^\varsigma (D\cup E)+ H_\rho ^\varsigma (D\cap E)= H_\rho ^\varsigma (D)+ H_\rho ^\varsigma (E). \end{aligned}$$
(58)

\(\square\)

Corollary

Proof follows directly from the proof of theorem (5) by taking\(E=D^c\).

Proof of Theorem (6):

First we prove that \(H_\rho ^\varsigma (D)\) is independent of \(\rho\) when D is most fuzzy set, that is, \(\mu _D (o_i)=\nu _D (o_i)\) for all \(o_i\in X\). Therefore, substituting \(\mu _D (o_i)=\nu _D (o_i)\) in (10), we get

$$\begin{aligned} H_\rho ^\varsigma (D)= \frac{n\left( 2^{1-\rho }e^{1-2^{-\rho }}-2^{1-\varsigma }e^{1-2^{-\varsigma }}\right) }{n\left( 2^{1-\rho }e^{1-2^{-\rho }}-2^{1-\varsigma }e^{1-2^{-\varsigma }}\right) }=1; \end{aligned}$$
(59)

which is independent of \(\rho\) and \(\varsigma\).

Similarly, if D is least fuzzy set, that is, taking  \(\mu _D (o_i)=1, \nu _D (o_i)=0\) or \(\mu _D (o_i)=0, \nu _D (o_i)=1\) in (10), we find that \(H_\rho ^\varsigma (D)=0\) which is again free of \(\rho\) and \(\varsigma\). This proves the theorem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, R. A new multi-criteria decision-making method based on intuitionistic fuzzy information and its application to fault detection in a machine. J Ambient Intell Human Comput 11, 739–753 (2020). https://doi.org/10.1007/s12652-019-01322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-019-01322-1

Keywords

Mathematics Subject Classification

Navigation