Skip to main content

Advertisement

Log in

Study on the Impact of Bio Waste Cashew Nut Shell Powder in the Polyvinyl Alcohol Bio Films

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The intention of this work is to study the impact of inclusion of Cashew nut shell powder (CNS) in the Poly vinylalcohol (PVA) based films. CNS is a biowaste material chosen as a particulate reinforcement, and the biodegradable polymer PVA is made as a matrix material. The films with various weight proportion was fabricated through solution casting method and characterized using FTIR, XRD, morphological examinations, mechanical and thermal property analysis, antibacterial evaluation, and degradation tests. Compared to films lacking essential oil, the biodegradable films showed significant enhancements in mechanical properties, with tensile strength increasing to 22 MPa (a 130% increase), tensile modulus increasing to 264 MPa, and elongation decreasing by 24.5%. However, the addition of essential oil significantly improved thermal stability, with the initiation of degradation showing at a significantly higher temperature of 215 °C, representing a significant 43% increase. The antimicrobial testing revealed a significant 93% reduction in bacterial growth, demonstrating CNS's potency as an antibacterial agent. These findings highlight the possibility of combining CNS with PVA to fabricate biocomposite films with higher biodegradability and antibacterial characteristics, along with higher tensile strength and thermal stability, confirming their viability for eco-friendly packaging materials and other sustainable applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Any data related to this manuscript can be made available on request.

References

  1. Rathinavel S, Senthilkumar TS, Saravanakumar SS, et al (2023) Development and analysis of environmentally friendly biocomposite films with pomegranate peel as filler for conventional applications. Biom. Conv. Bioref. https://doi.org/10.1007/s13399-023-04658-z.

  2. Awad, M.A., Hendi, A.A., Ortashi, K.M.O., Elradi, D.F.A., Eisa, N.E., Al-lahieb, L.A., Al-otiby, S.M., Merghani, N.M., Awad, A.A.G.: Int. J. Phys. Sci. 9, 34–40 (2014)

    Article  Google Scholar 

  3. Rathinavel, S., Saravanakumar, S.S.: Development and Analysis of Silver Nano Particle Influenced PVA/Natural Particulate Hybrid Composites with Thermo-Mechanical Properties. J. Polym. Environ. 29, 1894–1907 (2021). https://doi.org/10.1007/s10924-020-01999-y

    Article  Google Scholar 

  4. Davis, G., Song, J.H.: Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind. Crops and Prod. 23(2), 147–161 (2006). https://doi.org/10.1016/j.indcrop.2005.05.004

    Article  Google Scholar 

  5. Gross, R.A.: Biodegradable Polymers for the Environment. Science 297(5582), 803–807 (2002). https://doi.org/10.1126/science.297.5582.803

    Article  Google Scholar 

  6. Rathinavel, S., Saravanakumar, S.S.: Synthesis of Silver Nanoparticles Through Orange Peel Powder for Antibacterial Composite Filler Applications. J. Polym. Environ. 30, 1407–1414 (2022). https://doi.org/10.1007/s10924-021-02276-2

    Article  Google Scholar 

  7. Panou, Andreas, Karabagias, Ioannis Konstantinos: Biodegradable Packaging Materials for Foods Preservation: Sources, Advantages, Limitations, and Future Perspectives. Coatings 13(7), 1176 (2023). https://doi.org/10.3390/coatings13071176

    Article  Google Scholar 

  8. Li, M., Sun, Y., Feng, D., et al.: Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16, 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1

    Article  Google Scholar 

  9. Silva, G.G.D., Sobral, P.J.A., Carvalho, R.A., et al.: Biodegradable Films Based on Blends of Gelatin and Poly (Vinyl Alcohol): Effect of PVA Type or Concentration on Some Physical Properties of Films. J. Polym. Environ. 16, 276–285 (2008). https://doi.org/10.1007/s10924-008-0112-9

    Article  Google Scholar 

  10. Hajji, S., Chaker, A., Jridi, M., et al.: Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environ. Sci. Pollut. Res. 23, 15310–15320 (2016). https://doi.org/10.1007/s11356-016-6699-9

    Article  Google Scholar 

  11. Suganthi, S., Vignesh, S., Kalyana Sundar, J., et al.: Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Appl Water Sci 10, 100 (2020). https://doi.org/10.1007/s13201-020-1162-y

    Article  Google Scholar 

  12. Emran, M.Y. et al. (2023). Biowaste Materials for Advanced Biodegradable Packaging Technology. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-09710-2_46

  13. Ismail, H., Zaaba, N.F.: Effect of Additives on Properties of Polyvinyl Alcohol (PVA)/Tapioca Starch Biodegradable Films. Polym Plast Technol Eng 50(12), 1214–1219 (2011). https://doi.org/10.1080/03602559.2011.566241

    Article  Google Scholar 

  14. Rathinavel, S., Saravanakumar, S.S.: Development and Analysis of Poly Vinyl Alcohol/Orange peel powder biocomposite films. J. Nat. Fibers. 18(12), 2045–2054 (2020)

    Article  Google Scholar 

  15. Balavairavan, B., Saravanakumar, S.S.: Characterization of Ecofriendly Poly (Vinyl Alcohol) and Green Banana Peel Filler (GBPF) Reinforced Bio-Films. J. Polym. Environ. 29, 2756–2771 (2021). https://doi.org/10.1007/s10924-021-02056-y

    Article  Google Scholar 

  16. S. Tripathi; G.K. Mehrotra; P.K. Dutta (2009). Physicochemical and bioactivity of cross-linked chitosan–PVA film for food packaging applications. , 45(4), 0–376. doi:https://doi.org/10.1016/j.ijbiomac.2009.07.006

  17. G. Davis, J.H. Song: Biodegradable packaging based on raw materials from crops and their impact on waste management. 23 147-161 (2006)https://doi.org/10.1016/j.indcrop.2005.05.004

  18. N.H. Mutha, M. Patel, V. Premnath: Plastics materials flow analysis for India. 47 222-244 (2006) https://doi.org/10.1016/j.resconrec.2005.09.003

  19. S. Gupta, K. Mohan, R. Prasad, S. Gupta: Solid waste management in India : options and opportunities. 24 137-154 (1998)

  20. Soni, B., Mahmoud, B., Chang, S., El-giar, E.M., Barbary, E.: Physicochemical, antimicrobial and antioxidant properties of chitosan / TEMPO biocomposite packaging fi lms. Food Packag. Shelf Life 17(June), 73–79 (2018). https://doi.org/10.1016/j.fpsl.2018.06.001

    Article  Google Scholar 

  21. Kicińska-Jakubowska, Anna, Bogacz, Edyta, Zimniewska, Ma.łgorzata: Review of Natural Fibers Part I—Vegetable Fibers. J Nat Fib 9(3), 150–167 (2012). https://doi.org/10.1080/15440478.2012.703370

    Article  Google Scholar 

  22. Divakaran, D., Suyambulingam, I., Gapsari, F., Vijay, R., Ayyappan, V., & Siengchin, S: Isolation and characterization of microcrystalline cellulose from an agro-waste tamarind (Tamarindus indica) seeds and its suitability investigation for biofilm formulation. Intl. J. Biol. Macromol. (2024) https://doi.org/10.1016/j.ijbiomac.2023.127687.

  23. Dineshkumar, J., Jesudas, T.: Hybrid polymer matrix development using cashew nut shell liquid as an additive into epoxy resin. J. Chin. Inst. Eng. 46(4), 380–388 (2023)

    Article  Google Scholar 

  24. Ike, D.C., Ibezim-Ezeani, M.U., Akaranta, O.: Cashew nutshell liquid and its derivatives in oil field applications: an update. Green Chem. Lett. Rev. 14(4), 620–633 (2021)

    Article  Google Scholar 

  25. Nuithitikul, K., Phromrak, R., Saengngoen, W.: Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution. Sci. Rep. 10, 3343 (2020). https://doi.org/10.1038/s41598-020-60161-9

    Article  Google Scholar 

  26. Singaravelu, D. L., Vijay, R., & Filip, P: Influence of various cashew friction dusts on the fade and recovery characteristics of non-asbestos copper free brake friction composites. Wear. (2019) https://doi.org/10.1016/j.wear.2018.12.036

  27. Sadanand, V., Rajini, N., Varada Rajulu, A., Satyanarayana, B.: Effect of Sunlight on the Preparation and Properties of Cellulose/Silver Nanoparticle Composite Films by in Situ Method Using Ocimum Sanctum Leaf Extract as a Reducing Agent. Int. J. Polym. Anal. Charact. 23(4), 313–320 (2018). https://doi.org/10.1080/1023666X.2018.1440915

    Article  Google Scholar 

  28. Saravanakumar, S.S., Kumaravel, A., Nagarajan, T., Sudhakar, P., Baskaran, R.: Characterization of a Novel Natural Cellulosic Fiber from Prosopis Juliflora Bark. Carbohyd. Polym. 92(2), 1928–1933 (2013). https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  Google Scholar 

  29. Santhanam, K., Kumaravel, A., Saravanakumar, S.S., Arthanarieswaran, V.P.: Characterization of New Natural Cellulosic Fiber From Ipomoea Staphylinaplant. Int. J. Polym. Anal. Charact. 21(3), 267–274 (2016). https://doi.org/10.1080/1023666X.2016.1147654

    Article  Google Scholar 

  30. Soni, B., Mahmoud, B., Chang, S., et al.: Physicochemical, antimicrobial and antioxidant properties of chitosan/TEMPO biocomposite packaging films. Food Pack. and Shelf Life 17(June), 73–79 (2018). https://doi.org/10.1016/j.fpsl.2018.06.001

    Article  Google Scholar 

  31. Mathew, S., Snigdha, S., Mathew, J., Radhakrishnan, E.K.: Poly(vinyl alcohol): Montmorillonite: Boiled rice water (starch) blend film reinforced with silver nanoparticles; characterization and antibacterial properties. Appl. Clay Sci. 161, 464–473 (2018). https://doi.org/10.1016/j.clay.2018.05.009

    Article  Google Scholar 

  32. Palai, B., Sarangi, S.K., Mohapatra, S.S.: Characterization of silver nano-particle coated Eichhornia crassipes fiber for antibacterial applications. J. Nat. Fibers 19, 1828–1836 (2022). https://doi.org/10.1080/15440478.2020.1788492

    Article  Google Scholar 

  33. Lee, S.W., Phillips, K.S., Gu, H., Kazemzadeh-Narbat, M., Ren, D.: How microbes read the map: Effects of implant topography on bacterial adhesion and biofilm formation. Biomaterials 268, 120595 (2021). https://doi.org/10.1016/j.biomaterials.2020.120595

    Article  Google Scholar 

  34. Rajini, N., Alavudeen, A., Siengchin, S., Rajulu, V., Ayrilmis, N.: Development and analysis of completely biodegradable cellulose/banana peel powder composite films. J Nat Fibers (2019). https://doi.org/10.1080/15440478.2019.1612811

    Article  Google Scholar 

  35. Senthilkumar, P., Yaswant, G., Kavitha, S., et al.: Preparation and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. Int. J. Biol. Macromol. 141, 290–298 (2019)

    Article  Google Scholar 

  36. Suteewong, T., Wongpreecha, J., Polpanich, D., et al.: PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. Coll. Sur. B: Biointerfaces 174, 544–552 (2018)

    Article  Google Scholar 

  37. Gupta, M.K., Manimaran, P., Suresha, B., et al.: Investigation of mechanical and dynamic mechanical properties of novel Acacia arabica fiber polyester hybrid composites. Polym. Compos. (2022). https://doi.org/10.1002/pc.26569

    Article  Google Scholar 

  38. Indira Devi, M.P., Nallamuthu, N., Rajini, N., et al.: Tensile, thermal, and antibacterial characterization of composites of cellulose/ modified Pennisetum purpureum natural fibers with in situ generated copper nanoparticles. Int. J. Poly. Anal. Charact. 23(6), 502–508 (2018). https://doi.org/10.1080/1023666X.2018.1485201

    Article  Google Scholar 

  39. Cano, A.I., Cháfer, M., Chiralt, A., González-Martínez, C.: Physical and microstructural properties of biodegradable films based on pea starch and PVA. J. Food Eng. 167, 59–64 (2015)

    Article  Google Scholar 

  40. Baskaran, P.G., Kathiresan, M., Senthamaraikannan, P., Saravana Kumar, S.: Characterization of new natural cellulosic fiber from the bark of dichrostachys cinerea. J Nat Fibers 15, 1–7 (2017). https://doi.org/10.1080/15440478.2017.1304314

    Article  Google Scholar 

  41. Prithivirajan, R., Narayanasamy, P., Al-Dhabi, N.A., et al.: Characterization of Musa Paradisiaca L. cellulosic natural fibers from agro-discarded blossom petal waste. J Nat Fibers 17, 1640–1653 (2020). https://doi.org/10.1080/15440478.2019.1588826

    Article  Google Scholar 

  42. Shanmugasundaram, N., Rajendran, I., Ramkumar, T.: Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydr. Polym. 195, 566–575 (2018). https://doi.org/10.1016/j.carbpol.2018.04.127

    Article  Google Scholar 

  43. Bhanu, Priya, Vinod Kumar, Gupta, Deepak, Pathania, Amar Singh, Singha: Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohyd. Polym. 109, 171–179 (2014). https://doi.org/10.1016/j.carbpol.2014.03.044

    Article  Google Scholar 

  44. Kumar, Deepak; Kumar, Pramendra; Pandey, Jyoti (2018). Binary grafted chitosan film: Synthesis, characterization, antibacterial activity and prospects for food packaging. International Journal of Biological Macromolecules, S0141813017342599–. doi:https://doi.org/10.1016/j.ijbiomac.2018.04.084

  45. Rayna Bryaskova, Daniela Pencheva, Girish M. Kale, Umesh Lad, T. Kantardjiev : Synthesis, characterisation and antibacterial activity of PVA/TEOS/Ag-Np hybrid thin films. , 349(1), 77–85 (2010). https://doi.org/10.1016/j.jcis.2010.04.091

  46. Thiagamani, S.M.K., Rajini, N., Siengchin, S.: Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Compos. Part B. Engineering 165, 516–525 (2019)

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to G. K. Mahanta.

Ethics declarations

Ethical Approval

Not Applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanta, G.K., Joardar, H. Study on the Impact of Bio Waste Cashew Nut Shell Powder in the Polyvinyl Alcohol Bio Films. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02576-3

Keywords

Navigation