Skip to main content

Advertisement

Log in

Properties and Characteristics of Fish Skin Gelatin-Based Three-Layer Film Developed with Bioplastics and Physalis Leaf Extract

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The impact of incorporation of Physalis leaf extract (PLE) at various levels on properties and characteristics of the gelatin based three-layer film (Poly (lactic acid)/Gelatin/Poly (butylene adipate-co-terephthalate) was investigated. Three-layer films were developed by a three-step casting process and each layer of film was incorporated with PLE at 0–15% (w/w). Young’s Modulus (525.19-164.24 MPa) and tensile strength (22.38–8.38 MPa) of three-layer films decreased with augmented level of PLE (p < 0.05), in contrast elongation at break (13.80-142.56%) was increased (p < 0.05). In general, the incorporation of PLE resulted the three-layer films with lower water vapor permeability ranged from 1.442 to 1.019 × 10–11 g.m.m− 2.s− 1.Pa− 1 than the control counterpart (P/G/B-PLE-0%) (without PLE) (1.473 × 10–11 g.m.m− 2.s− 1.Pa− 1) (p < 0.05). Greenness (-a* value) of the resulting films increased with augmenting incorporation ratios of PLE (p < 0.05). The lower transparency value (7.41) was recorded for control film (without extract) (p < 0.05). However, PLE incorporated three-layer film exhibited compact structure as revealed by SEM micrographs. Thermal properties of obtained three-layer film were impacted by the addition of plant extract. Thus, the enhanced water vapor barrier property and improved elasticity were obtained for PLA/Gelatin/PBAT films incorporated with PLE.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data were not shared.

References

  1. de Pereira, D.A., Paseiro Losada, P., Maroto, J., Cruz, J.M.: Natural antioxidant active packaging film and its effect on lipid damage in frozen blue shark (Prionace glauca). Innovative Food Sci. Emerg. Technol. 12, 50–55 (2011). https://doi.org/10.1016/j.ifset.2010.12.006

    Article  Google Scholar 

  2. Masajo-Manalili, N., Dorado, M.A., van Otterdijk, R.: Appropriate food Packaging Solutions for Developing Countries. Food and Agriculture Organization of the United Nations (2014)

  3. Artharn, A., Prodpran, T., Benjakul, S.: Round scad protein-based film: Storage stability and its effectiveness for shelf-life extension of dried fish powder. LWT - Food Sci. Technol. 42, 1238–1244 (2009). https://doi.org/10.1016/j.lwt.2008.08.009

    Article  Google Scholar 

  4. Najwa, N.A., Guerrero, I.S., de la Caba, P., Nur Hanani, K.: Physical and antioxidant properties of starch/gelatin films incorporated with Garcinia Atroviridis leaves. Food Packag Shelf Life. 26, 100583 (2020). https://doi.org/10.1016/j.fpsl.2020.100583

    Article  Google Scholar 

  5. Kasai, D., Chougale, R., Masti, S., Chalannavar, R., Malabadi, R.B., Gani, R., Gouripur, G.: An investigation into the Influence of Filler Piper nigrum leaves Extract on Physicochemical and Antimicrobial properties of Chitosan/Poly (Vinyl Alcohol) Blend films. J. Polym. Environ. 27, 472–488 (2019). https://doi.org/10.1007/s10924-018-1353-x

    Article  Google Scholar 

  6. Nisar, T., Wang, Z.-C., Yang, X., Tian, Y., Iqbal, M., Guo, Y.: Characterization of citrus pectin films integrated with clove bud essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Int. J. Biol. Macromol. 106, 670–680 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.068

    Article  Google Scholar 

  7. Maryam Adilah, Z.A., Nur Hanani, Z.A.: Storage stability of soy protein isolate films incorporated with mango kernel extract at different temperature. Food Hydrocoll. 87, 541–549 (2019). https://doi.org/10.1016/j.foodhyd.2018.08.038

    Article  Google Scholar 

  8. Adilah, A.N., Jamilah, B., Noranizan, M.A., Hanani, Z.A.N.: Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packag Shelf Life. 16, 1–7 (2018). https://doi.org/10.1016/j.fpsl.2018.01.006

    Article  Google Scholar 

  9. Alfaro, A.T., Balbinot, E., Weber, C.I., Tonial, I.B., Machado-Lunkes, A.: Fish gelatin: Characteristics, Functional Properties, Applications and Future potentials. Food Eng. Rev. 7, 33–44 (2015). https://doi.org/10.1007/s12393-014-9096-5

    Article  Google Scholar 

  10. Rattaya, S., Benjakul, S., Prodpran, T.: Properties of fish skin gelatin film incorporated with seaweed extract. J. Food Eng. 95, 151–157 (2009). https://doi.org/10.1016/j.jfoodeng.2009.04.022

    Article  Google Scholar 

  11. Simpson, B.K., Nollet, L.M.L., Toldrá, F., Benjakul, S., Paliyath, G., Hui, Y.H.: Food Biochemistry and food Processing. Wiley (2012)

  12. Gómez-Guillén, M.C., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., Montero, P.: Fish gelatin: A renewable material for developing active biodegradable films. Trends Food Sci. Technol. 20, 3–16 (2009). https://doi.org/10.1016/j.tifs.2008.10.002

    Article  Google Scholar 

  13. Xiong, S.-J., Pang, B., Zhou, S.-J., Li, M.-K., Yang, S., Wang, Y.-Y., Shi, Q., Wang, S.-F., Yuan, T.-Q., Sun, R.-C.: Economically competitive biodegradable PBAT/Lignin composites: Effect of Lignin methylation and Compatibilizer. ACS Sustain. Chem. Eng. 8, 5338–5346 (2020). https://doi.org/10.1021/acssuschemeng.0c00789

    Article  Google Scholar 

  14. Shankar, S., Rhim, J.-W.: Tocopherol-mediated synthesis of silver nanoparticles and preparation of antimicrobial PBAT/silver nanoparticles composite films. LWT - Food Sci. Technol. 72, 149–156 (2016). https://doi.org/10.1016/j.lwt.2016.04.054

    Article  Google Scholar 

  15. Zehetmeyer, G., Meira, S.M.M., Scheibel, J.M., de Oliveira, R.V.B., Brandelli, A., Soares, R.M.D.: Influence of melt processing on biodegradable nisin- <scp > PBAT films intended for active food packaging applications</scp >. J. Appl. Polym. Sci. 133 (2016). https://doi.org/10.1002/app.43212

  16. Muthuraj, R., Misra, M., Mohanty, A.K.: Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J. Appl. Polym. Sci. 132 (2015). https://doi.org/10.1002/app.42189

  17. Díez-Pascual, A.M., Díez-Vicente, A.L.: Antimicrobial and sustainable food packaging based on poly(butylene adipate-co-terephthalate) and electrospun chitosan nanofibers. RSC Adv. 5, 93095–93107 (2015). https://doi.org/10.1039/C5RA14359D

    Article  Google Scholar 

  18. Eroglu, N.S., Canoglu, S.: Characterization of PLA nanofiber structures containing herbal extracts. Eur. J. Chem. 13, 99–108 (2022). https://doi.org/10.5155/eurjchem.13.1.99-108.2213

    Article  Google Scholar 

  19. Martino, V.P., Jiménez, A., Ruseckaite, R.A.: Processing and characterization of poly(lactic acid) films plasticized with commercial adipates. J. Appl. Polym. Sci. 112, 2010–2018 (2009). https://doi.org/10.1002/app.29784

    Article  Google Scholar 

  20. Chen, J., Zhang, J., Liu, D., Zhang, C., Yi, H., Liu, D.: Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin. Food Packag Shelf Life. 34, 100980 (2022). https://doi.org/10.1016/j.fpsl.2022.100980

    Article  Google Scholar 

  21. Murugan, G., Benjakul, S., Prodpran, T., Rajasekaran, B., Baboonsundaram, A., Nagarajan, M.: Enhancement of Barrier properties of Fish skin gelatin based Film layered with PLA and PBAT. J. Polym. Environ. 31, 5416–5431 (2023). https://doi.org/10.1007/s10924-023-02948-1

    Article  Google Scholar 

  22. Wang, Q., Chen, W., Zhu, W., McClements, D.J., Liu, X., Liu, F.: A review of multilayer and composite films and coatings for active biodegradable packaging. NPJ Sci. Food. 6, 18 (2022). https://doi.org/10.1038/s41538-022-00132-8

    Article  Google Scholar 

  23. Luciano, C.G., Rodrigues, M.M., Lourenço, R.V., Bittante, A.M.Q.B., Fernandes, A.M., do Amaral Sobral, P.J.: Bi-layer gelatin Film: Activating Film by Incorporation of Pitanga Leaf Hydroethanolic Extract and/or Nisin in the second layer. Food Bioproc Tech. 14, 106–119 (2021). https://doi.org/10.1007/s11947-020-02568-w

    Article  Google Scholar 

  24. Xia, C., Wang, W., Wang, L., Liu, H., Xiao, J.: Multilayer zein/gelatin films with tunable water barrier property and prolonged antioxidant activity. Food Packag Shelf Life. 19, 76–85 (2019). https://doi.org/10.1016/j.fpsl.2018.12.004

    Article  Google Scholar 

  25. Vargas-Ponce, O., Sánchez Martínez, J., Zamora Tavares, M. del, Mares, P.V.: L.E.: Traditional management of a small-scale crop of Physalis angulata in Western Mexico. Genet Resour Crop Evol. 63, 1383–1395 (2016). https://doi.org/10.1007/s10722-015-0326-3

  26. Al Jitan, S., Alkhoori, S.A., Yousef, L.F.: Phenolic Acids From Plants: Extraction and Application to Human Health. Presented at the (2018)

  27. Mir, S.A., Dar, B.N., Wani, A.A., Shah, M.A.: Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends Food Sci. Technol. 80, 141–154 (2018). https://doi.org/10.1016/j.tifs.2018.08.004

    Article  Google Scholar 

  28. Shankar, S., Rhim, J.-W.: Preparation of antibacterial poly(lactide)/poly(butylene adipate-co-terephthalate) composite films incorporated with grapefruit seed extract. Int. J. Biol. Macromol. 120, 846–852 (2018). https://doi.org/10.1016/j.ijbiomac.2018.09.004

    Article  Google Scholar 

  29. Santoso, J., Yoshie-Stark, Y., Suzuki, T.: Anti-oxidant activity of methanol extracts from Indonesian seaweeds in an oil emulsion model. Fish. Sci. 70, 183–188 (2004). https://doi.org/10.1111/j.1444-2906.2003.00787.x

    Article  Google Scholar 

  30. Nagarajan, M., Benjakul, S., Prodpran, T., Songtipya, P.: Properties and characteristics of nanocomposite films from tilapia skin gelatin incorporated with ethanolic extract from coconut husk. J. Food Sci. Technol. 52, 7669–7682 (2015). https://doi.org/10.1007/s13197-015-1905-1

    Article  Google Scholar 

  31. Iwata, K.I., Ishizaki, S.H., Handa, A.K., Tanaka, M.U.: Preparation and characterization of edible films from fish water-soluble proteins. Fish. Sci. 66, 372–378 (2000). https://doi.org/10.1046/j.1444-2906.2000.00057.x

    Article  Google Scholar 

  32. Shiku, Y., Yuca Hamaguchi, P., Benjakul, S., Visessanguan, W., Tanaka, M.: Effect of surimi quality on properties of edible films based on Alaska Pollack. Food Chem. 86, 493–499 (2004). https://doi.org/10.1016/j.foodchem.2003.09.022

    Article  Google Scholar 

  33. Gennadios, A., Handa, A., Froning, G.W., Weller, C.L., Hanna, M.A.: Physical properties of Egg White – Dialdehyde Starch films. J. Agric. Food Chem. 46, 1297–1302 (1998). https://doi.org/10.1021/jf9708047

    Article  Google Scholar 

  34. Jongjareonrak, A., Benjakul, S., Visessanguan, W., Tanaka, M.: Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and α-tocopherol. Food Hydrocoll. 22, 449–458 (2008). https://doi.org/10.1016/j.foodhyd.2007.01.002

    Article  Google Scholar 

  35. Han, J.H., Floros, J.D.: Casting Antimicrobial Packaging films and Measuring their physical properties and Antimicrobial Activity. J. Plast. Film Sheeting. 13, 287–298 (1997). https://doi.org/10.1177/875608799701300405

    Article  Google Scholar 

  36. Martucci, J.F., Ruseckaite, R.A.: Three-layer sheets based on gelatin and poly(lactic acid), part 1: Preparation and properties. J. Appl. Polym. Sci. 118, 3102–3110 (2010). https://doi.org/10.1002/app.32751

    Article  Google Scholar 

  37. Nuthong, P., Benjakul, S., Prodpran, T.: Characterization of porcine plasma protein-based films as affected by pretreatment and cross-linking agents. Int. J. Biol. Macromol. 44, 143–148 (2009). https://doi.org/10.1016/j.ijbiomac.2008.11.006

    Article  Google Scholar 

  38. Hoque, M.S., Benjakul, S., Prodpran, T., Songtipya, P.: Properties of blend film based on cuttlefish (Sepia pharaonis) skin gelatin and mungbean protein isolate. Int. J. Biol. Macromol. 49, 663–673 (2011). https://doi.org/10.1016/j.ijbiomac.2011.06.028

    Article  Google Scholar 

  39. Steel, R.G.D., Torrie, J.H.: Principles and procedures of statistics. Principles and procedures of statistics. (1960)

  40. Nogueira, G.F., Soares, C.T., Cavasini, R., Fakhouri, F.M., de Oliveira, R.A.: Bioactive films of arrowroot starch and blackberry pulp: Physical, mechanical and barrier properties and stability to pH and sterilization. Food Chem. 275, 417–425 (2019). https://doi.org/10.1016/j.foodchem.2018.09.054

    Article  Google Scholar 

  41. Maryam Adilah, Z.A., Jamilah, B., Hanani, N.: Functional and antioxidant properties of protein-based films incorporated with mango kernel extract for active packaging. Food Hydrocoll. 74, 207–218 (2018). https://doi.org/10.1016/j.foodhyd.2017.08.017

    Article  Google Scholar 

  42. Roy, S., Rhim, J.-W.: Curcumin Incorporated Poly(Butylene Adipate-co-Terephthalate) Film with Improved Water Vapor barrier and antioxidant properties. Materials. 13, 4369 (2020). https://doi.org/10.3390/ma13194369

    Article  Google Scholar 

  43. Tagrida, M., Nilsuwan, K., Gulzar, S., Prodpran, T., Benjakul, S.: Fish gelatin/chitosan blend films incorporated with betel (Piper betle L.) leaf ethanolic extracts: Characteristics, antioxidant and antimicrobial properties. Food Hydrocoll. 137, 108316 (2023). https://doi.org/10.1016/j.foodhyd.2022.108316

    Article  Google Scholar 

  44. Maryam Adilah, Z.A., Nur Hanani, Z.A.: Active packaging of fish gelatin films with Morinda citrifolia oil. Food Biosci. 16, 66–71 (2016). https://doi.org/10.1016/j.fbio.2016.10.002

    Article  Google Scholar 

  45. Zaman, N.B.K., Lin, N.K., Phing, P.L.: Chitosan film incorporated with Garcinia Atroviridis for the packaging of Indian mackerel (Rastrelliger kanagurta). Ciência E Agrotecnol. 42, 666–675 (2018). https://doi.org/10.1590/1413-70542018426019918

    Article  Google Scholar 

  46. Martins, C., Vilarinho, F., Sanches Silva, A., Andrade, M., Machado, A.V., Castilho, M.C., Sá, A., Cunha, A., Vaz, M.F., Ramos, F.: Active polylactic acid film incorporated with green tea extract: Development, characterization and effectiveness. Ind. Crops Prod. 123, 100–110 (2018). https://doi.org/10.1016/j.indcrop.2018.06.056

    Article  Google Scholar 

  47. Giménez, B., López de Lacey, A., Pérez-Santín, E., López-Caballero, M.E., Montero, P.: Release of active compounds from agar and agar–gelatin films with green tea extract. Food Hydrocoll. 30, 264–271 (2013). https://doi.org/10.1016/j.foodhyd.2012.05.014

    Article  Google Scholar 

  48. Tharanathan, R.N.: Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Technol. 14, 71–78 (2003). https://doi.org/10.1016/S0924-2244(02)00280-7

    Article  Google Scholar 

  49. Siracusa, V.: Food Packaging Permeability Behaviour: A Report. Int J Polym Sci. 1–11 (2012). (2012). https://doi.org/10.1155/2012/302029

  50. Wu, J., Chen, S., Ge, S., Miao, J., Li, J., Zhang, Q.: Preparation, properties and antioxidant activity of an active film from silver carp (Hypophthalmichthys molitrix) skin gelatin incorporated with green tea extract. Food Hydrocoll. 32, 42–51 (2013). https://doi.org/10.1016/j.foodhyd.2012.11.029

    Article  Google Scholar 

  51. Vilarinho, F., Andrade, M., Buonocore, G.G., Stanzione, M., Vaz, M.F., Sanches Silva, A.: Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly(lactic acid) film. Eur. Polym. J. 98, 362–367 (2018). https://doi.org/10.1016/j.eurpolymj.2017.11.034

    Article  Google Scholar 

  52. Li, J.-H., Miao, J., Wu, J.-L., Chen, S.-F., Zhang, Q.-Q.: Preparation and characterization of active gelatin-based films incorporated with natural antioxidants. Food Hydrocoll. 37, 166–173 (2014). https://doi.org/10.1016/j.foodhyd.2013.10.015

    Article  Google Scholar 

  53. Silva-Weiss, A., Ihl, M., Sobral, P.J.A., Gómez-Guillén, M.C., Bifani, V.: Natural additives in Bioactive Edible films and Coatings: Functionality and applications in Foods. Food Eng. Rev. 5, 200–216 (2013). https://doi.org/10.1007/s12393-013-9072-5

    Article  Google Scholar 

  54. Grabska-Zielińska, S., Gierszewska, M., Olewnik-Kruszkowska, E., Bouaziz, M.: Polylactide films with the addition of Olive Leaf Extract—Physico-Chemical characterization. Materials. 14, 7623 (2021). https://doi.org/10.3390/ma14247623

    Article  Google Scholar 

  55. Nilsuwan, K., Benjakul, S., Prodpran, T.: Physical/thermal properties and heat seal ability of bilayer films based on fish gelatin and poly(lactic acid). Food Hydrocoll. 77, 248–256 (2018). https://doi.org/10.1016/j.foodhyd.2017.10.001

    Article  Google Scholar 

  56. Jongjareonrak, A., Benjakul, S., Visessanguan, W., Prodpran, T., Tanaka, M.: Characterization of edible films from skin gelatin of brownstripe red snapper and bigeye snapper. Food Hydrocoll. 20, 492–501 (2006). https://doi.org/10.1016/j.foodhyd.2005.04.007

    Article  Google Scholar 

  57. Tongnuanchan, P., Benjakul, S., Prodpran, T.: Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chem. 134, 1571–1579 (2012). https://doi.org/10.1016/j.foodchem.2012.03.094

    Article  Google Scholar 

  58. Norajit, K., Kim, K.M., Ryu, G.H.: Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J. Food Eng. 98, 377–384 (2010). https://doi.org/10.1016/j.jfoodeng.2010.01.015

    Article  Google Scholar 

  59. Talón, E., Trifkovic, K.T., Nedovic, V.A., Bugarski, B.M., Vargas, M., Chiralt, A., González-Martínez, C.: Antioxidant edible films based on chitosan and starch containing polyphenols from thyme extracts. Carbohydr. Polym. 157, 1153–1161 (2017). https://doi.org/10.1016/j.carbpol.2016.10.080

    Article  Google Scholar 

  60. Malinowski, R., Moraczewski, K., Raszkowska-Kaczor, A.: Studies on the Uncrosslinked Fraction of PLA/PBAT blends modified by Electron Radiation. Materials. 13, 1068 (2020). https://doi.org/10.3390/ma13051068

    Article  Google Scholar 

  61. Kemala, T., Budianto, E., Soegiyono, B.: Preparation and characterization of microspheres based on blend of poly(lactic acid) and poly(ɛ-caprolactone) with poly(vinyl alcohol) as emulsifier. Arab. J. Chem. 5, 103–108 (2012). https://doi.org/10.1016/j.arabjc.2010.08.003

    Article  Google Scholar 

  62. Weng, Y.-X., Jin, Y.-J., Meng, Q.-Y., Wang, L., Zhang, M., Wang, Y.-Z.: Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym. Test. 32, 918–926 (2013). https://doi.org/10.1016/j.polymertesting.2013.05.001

    Article  Google Scholar 

  63. Chieng, B.W., Ibrahim, N.A., Yunus, W.M.Z.W., Hussein, M.Z.: Plasticized poly(lactic acid) with low molecular weight poly(ethylene glycol): Mechanical, thermal, and morphology properties. J. Appl. Polym. Sci. 130, 4576–4580 (2013). https://doi.org/10.1002/app.39742

    Article  Google Scholar 

  64. Nagarajan, M., Prodpran, T., Benjakul, S., Songtipya, P.: Properties and characteristics of multi-layered films from Tilapia skin gelatin and poly(lactic acid). Food Biophys. 12, 222–233 (2017). https://doi.org/10.1007/s11483-017-9478-3

    Article  Google Scholar 

  65. Bheemaneni, G., Saravana, S., Kandaswamy, R.: Processing and characterization of poly (butylene adipate-co-terephthalate) / wollastonite biocomposites for medical applications. Mater. Today Proc. 5, 1807–1816 (2018). https://doi.org/10.1016/j.matpr.2017.11.279

    Article  Google Scholar 

  66. Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari, J.: Development and characterization of sugar palm starch and poly(lactic acid) bilayer films. Carbohydr. Polym. 146, 36–45 (2016). https://doi.org/10.1016/j.carbpol.2016.03.051

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Nagapattinam for all the support throughout the study. The authors were deeply grateful for the financial support, provided by the International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Thailand.

Author information

Authors and Affiliations

Authors

Contributions

Gokulprasanth Murugan - Investigation, Methodology, Data curation and writing original draft; Soottawat Benjakul - Validation, Resources and Writing-review & editing; Thummanoon Prodpran - Validation, Resources and Writing-review & editing; Jeya Shakila Robinson - Resources and Writing-review & editing; Masilan Karunanithi - Formal analysis and Writing-review & editing; Vaisshali Prakash Arul Prakasam - Formal analysis and Writing-review & editing; Muralidharan Nagarajan - Conceptualization, Funding acquisition, Resources, Supervision, Validation and Writing-review & editing.

Corresponding author

Correspondence to Muralidharan Nagarajan.

Ethics declarations

Ethical Approval

Ethics approval was not required for this research.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, G., Benjakul, S., Prodpran, T. et al. Properties and Characteristics of Fish Skin Gelatin-Based Three-Layer Film Developed with Bioplastics and Physalis Leaf Extract. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02554-9

Keywords

Navigation