Skip to main content
Log in

Techno-Economic Assessment of Ferulic Acid Bioproduction from Agro-industrial Waste Using Aspergillus niger

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As one of the leading countries in the agro-industrial sector, Indonesia has a wealth of biomass that can be converted into value-added commodities. The processing of this biomass generates waste containing cellulose, hemicellulose, and lignin, varying with biomass type. Valorizing this biomass presents an opportunity to enhance the profitability of agro-industries while simultaneously producing valuable chemicals like ferulic acid. Ferulic acid is a promising platform chemical that has numerous applications and significant derivative potential. This study conducts a techno-economic and profitability analysis for ferulic acid production using ferulic acid esterase (FAE) enzyme secreted from Aspergillus niger. We utilized SuperPro Designer v13.0 software to simulate the process, considering four scenarios: Oil palm empty fruit bunch (OPEFB), corn stover, sugarcane (SC) bagasse, and rice straw as raw materials. The results indicate that SC bagasse is the most optimal raw material, yielding 24.31% ferulic acid. This scenario offers a gross margin of 63.17%, a return on investment (ROI) of 36.27%, and a payback period of 2.76 years at an internal rate of return (IRR) of 27.47%, outperforming other scenarios. Therefore, using SC bagasse as the substrate shows the best overall assessment and simulation results. Our findings not only provide practical insights for the economic viability and sustainability of using different biomass types for high-value biochemical production but also pave the way for further exploration into the efficient utilization of regional biomass resources.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Index Mundi (2023). Indonesia Palm Oil Production by Year. March 20, 2023. https://www.indexmundi.com/agriculture/?commodity=palm-oil&country=id&graph=production

  2. Harsono, H., Putra, A.S., Maryana, R., Rizaluddin, A.T., H’ng, Y. Y., Nakagawa-izumi, A., & Ohi, H.: Preparation of dissolving pulp from oil palm empty fruit bunch by prehydrolysis soda-anthraquinone cooking method. J. Wood Sci. 62(1), 65–73 (2015)

    Article  Google Scholar 

  3. Rathamat, Z., Choorit, W., Chisti, Y., Prasertsan, P.: Two-step isolation of hemicellulose from oil palm empty fruit bunch fibers and its use in production of xylooligosaccharide prebiotic. Ind. Crops Prod. 160, 113124 (2021)

    Article  Google Scholar 

  4. Zainudin, M.H., Abdul Rahman, N.A., Abd-Aziz, S., Funaoka, M., Shinano, T., Shirai, Y., Wakisaka, M., Hassan, M.: Utilization of glucose recovered by phase separation system from acid-hydrolysed oil palm empty fruit bunch for bioethanol production. Pertanika J. Trop. Agric. Sci. 35, 117–126 (2012)

    Google Scholar 

  5. ASEAN Statistical Yearbook. (2021). ASEAN Statistical Yearbook 2021. The Asian Secretariat. https://www.aseanstats.org/wp-content/uploads/2021/12/ASYB_2021_All_Final.pdf

  6. Mourtzinis, S., Cantrell, K.B., Arriaga, F.J., Balkcom, K.S., Novak, J.M., Frederick, J.R., Karlen, D.L.: Carbohydrate and nutrient composition of corn stover from three southeastern USA locations. Biomass Bioenerg. 85, 153–158 (2016)

    Article  Google Scholar 

  7. Vincent, M., Pometto, A., III., Van Leeuwen, H.: Simultaneous Saccharification and Fermentation of Ground Corn Stover for the Production of Fuel Ethanol Using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011. J. Microbiol. Biotechnol. 21, 703–710 (2011)

    Article  Google Scholar 

  8. Valério, R., Crespo, J.G., Galinha, C.F., Brazinha, C.: Effect of Ultrafiltration Operating Conditions for Separation of Ferulic Acid from Arabinoxylans in Corn Fibre Alkaline Extract. Sustainability 13(9), 4682 (2021)

    Article  Google Scholar 

  9. Valério, R., Serra, A.T., Baixinho, J., Cardeira, M., Fernández, N., Bronze, M.R., Brazinha, C.: Combined hydrothermal pre-treatment and enzymatic hydrolysis of corn fibre: Production of ferulic acid extracts and assessment of their antioxidant and antiproliferative properties. Ind. Crops Prod. 170, 113731 (2021)

    Article  Google Scholar 

  10. Huang, J., Khan, M.T., Perecin, D., Coelho, S.T., Zhang, M.: Sugarcane for bioethanol production: Potential of bagasse in Chinese perspective. Renew. Sustain. Energy Rev. 133, 110296 (2020)

    Article  Google Scholar 

  11. Badan Pusat Statistik. (2022). Statistik Tebu Indonesia 2021. December 7, 2022. https://www.bps.go.id/publication/2022/11/30/6392bf8e4265949485d85e72/statistik-tebu-indonesia-2021.html

  12. Rabelo, S.C., da Costa, A.C., Vaz Rossel, C.E.: Industrial Waste Recovery. In: Santos, C., Caldas, C., Borem, A. (eds.) Sugarcane, pp. 365–381. Academic Press, Cambridge (2015)

    Chapter  Google Scholar 

  13. Alonso-Pippo, W., Luengo, C.A., Felfli, F.F., Garzone, P., Cornacchia, G.: Energy recovery from sugarcane biomass residues: Challenges and opportunities of bio-oil production in the light of second-generation biofuels. Journal of Renewable and Sustainable Energy 1(6), 063102 (2009)

    Article  Google Scholar 

  14. Shoaib, A.M., El-Adly, R.A., Hassanean, M.H.M., Youssry, A., Bhran, A.A.: Developing a free-fall reactor for rice straw fast pyrolysis to produce bio-products. Egypt. J. Pet. 27(2018), 1305–1311 (2018)

    Article  Google Scholar 

  15. Sindhu, R., Binod, P., Janu, K.U., Sukumaran, R.K., Pandey, A.: Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World J. Microbiol. Biotechnol. 28(2), 473–483 (2011). https://doi.org/10.1007/s11274-011-0838-8

    Article  Google Scholar 

  16. Xiao, T., Lai, R., Liu, Z., Xiong, S., Li, X., Zeng, Y., Jiao, S., Tang, Y., Lu, Y., Zu, Y.: Active pharmaceutical ingredient-ionic liquids assisted follicular co-delivery of ferulic acid and finasteride for enhancing targeted anti-alopecia. Int. J. Pharm. 648(December), 123642 (2023)

    Google Scholar 

  17. Bezerra, G.S.N., Pereira, M.A.V., Ostrosky, E.A., Barbosa, E.G., de Moura, M., de F. V., Ferrari, M., Aragão, C. F. S., & Gomes, A. P. B.: Compatibility study between ferulic acid and excipients used in cosmetic formulations by TG/DTG, DSC and FTIR. J. Therm. Anal. Calorim. 127(2), 1683–1691 (2017)

    Article  Google Scholar 

  18. Zduńska, K., Dana, A., Kolodziejczak, A., Rotsztejn, H.: Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacology and Physiology 31, 332–336 (2018)

    Article  Google Scholar 

  19. Yang, J., Chen, J., Hao, Y., Liu, Y.: Identification of the DPPH radical scavenging reaction adducts of ferulic acid and sinapic acid and their structure-antioxidant activity relationship. Lwt 146(March), 111411 (2021)

    Article  Google Scholar 

  20. Sun, X., Sun, P., Liu, L., Jiang, P., Li, Y.: Ferulic acid attenuates microglia-mediated neuroinflammation in retinal degeneration. BMC Ophthalmol. 21(1), 1–9 (2021)

    Article  Google Scholar 

  21. Li, D., Rui, Y., Guo, S., Luan, F., Liu, R., Zeng, N.: Ferulic acid: A review of its pharmacology, pharmacokinetics, and derivatives. Life Sci. 284, 119921 (2021)

    Article  Google Scholar 

  22. Borges, A., Ferreira, C., Saavedra, M.J., Simões, M.: Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 19(4), 256–265 (2013)

    Article  Google Scholar 

  23. Panwar, R., Sharma, A.K., Kaloti, M., Dutt, D., Pruthi, V.: Characterization and anticancer potential of ferulic acid-loaded chitosan nanoparticles against ME-180 human cervical cancer cell lines. Applied Nanoscience (Switzerland) 6(6), 803–813 (2016)

    Article  Google Scholar 

  24. Choi, J.H., Park, J.K., Kim, K.M., Lee, H.J., Kim, S.: In vitro and in vivo antithrombotic and cytotoxicity effects of ferulic acid. J. Biochem. Mol. Toxicol. 32(1), e22004 (2018)

    Article  Google Scholar 

  25. Luo, Z., Li, M., Yang, J., Li, J., Zhang, Y., Liu, F., El-Omar, E., Han, L., Bian, J., Gong, L., Wang, M.: Ferulic acid attenuates high-fat diet-induced hypercholesterolemia by activating classic bile acid synthesis pathway. Front. Nutr. 9, 976638 (2022)

    Article  Google Scholar 

  26. Zhang, L.W., Al-Suwayeh, S.A., Hsieh, P.W., Fang, J.Y.: A comparison of skin delivery of ferulic acid and its derivatives: Evaluation of their efficacy and safety. Int. J. Pharm. 399(1–2), 44–51 (2010)

    Article  Google Scholar 

  27. Saadon, S.Z.A.H., Osman, N.B., Yusup, S.: Pretreatment of fiber-based biomass material for lignin extraction. In: Yusup, S., Rashidi, N.A. (eds.) Value-Chain of Biofuels, pp. 105–135. Elsevier, Amsterdam (2022)

    Chapter  Google Scholar 

  28. Pazo-Cepeda, M.V., Guadalupe, S., Aspromonte & Alonso, E.: Extraction of ferulic acid and feruloylated arab-inoxylo-oligosaccharides from wheat bran using hot water. Food Biosci. 44, 101374 (2021)

    Article  Google Scholar 

  29. Converti, A., Aliakbarian, B., Domínguez, J.M., Vázquez, G.B., Perego, P.: Microbial production of biovanillin. Bra-zilian Journal of Microbiology 41(3), 519–530 (2010)

    Article  Google Scholar 

  30. Sharma, A., Sharma, A., Singh, J., Sharma, P., Tomar, G.S., Singh, S., Nain, L.: A biorefinery approach for the prduction of ferulic acid from agroresidues through ferulic acid esterase of lactic acid bacteria. 3 Biotech. 10(8), 1 (2020)

    Article  Google Scholar 

  31. Ou, S., Zhang, J., Wang, Y., Zhang, N.: Production of Feruloyl Esterase from Aspergillus niger by Solid-State Fermen-tation on Different Carbon Sources. Enzyme Res. 2011, 1–4 (2011)

    Article  Google Scholar 

  32. Wang, X., Yao, B., Su, X.: Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Int. J. Mol. Sci. 19(11), 3373 (2018)

    Article  Google Scholar 

  33. Brézillon, C., Kroon, P.A., Faulds, C.B., Brett, G.M., Williamson, G.: Novel ferulic acid esterases are induced by growth of Aspergillus niger on sugar-beet pulp. Appl. Microbiol. Biotechnol. 45(3), 371–376 (1996)

    Article  Google Scholar 

  34. Doran, P.: Bioprocess Engineering Principles. Academic Press Limited, London (1995)

    Google Scholar 

  35. Hidayatullah, I.M., Arbianti, R., Utami, T.S., Suci, M., Sahlan, M., Wijanarko, A., Gozan, M., Hermansyah, H.: Techno-economic analysis of lipase enzyme production from agro-industry waste with solid state fermentation method. IOP Conf. Ser. 316, 012064 (2018)

    Article  Google Scholar 

  36. Harahap, A.F.P., Panjaitan, J.R.H., Curie, C.A., Ramadhan, M.Y.A., Srinophakun, P., Gozan, M.: Techno-economic Evaluation of Hand Sanitiser Production using Oil Palm Empty Fruit Bunch-Based Bioethanol by Simultaneous Saccharification and Fermentation (SSF) Process. Appl. Sci. 2020(10), 5987 (2020)

    Article  Google Scholar 

  37. Gubernur Riau. (2022). Surat Keputusan Gubernur Riau No. KPTS 1783/XII/2022 tentang Upah Minimum Kabupaten/ Kota Riau 2023. July 15, 2023. https://diskominfo.pelalawankab.go.id/asset/files/UPAH_MINIMUM_KABUPATEN_KOTA_RIAU_TAHUN_2023.pdf

  38. PLN (2023). Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia No. 28 Tahun 2016. July 20, 2023. https://web.pln.co.id/pelanggan/tarif-tenaga-listrik

  39. Statista. (2015). Cost of wastewater treatment to reduce pharmaceutical residues in 2015, by technology (in euros per cubic meter). Energy & Environment: Water & Wastewater.

  40. Karimah, I., Suyuditomo, G., Harahap, A.F.P., Ramadhan, M.Y.A., Panjaitan, J.R.H., Sahlan, M., Hermansyah, H., Gozan, M.: Techno-economic analysis of furfural production with various pretreatment of oil palm empty fruit bunches using SuperPro Designer. IOP Conference Series: Earth and Environmental Science 749(1), 012042 (2021)

    Google Scholar 

  41. Grand View Research. (2023). Furfural Market Size, Share & Trends Analysis Report By Process (Quaker Batch Process), By Raw Material (Corn Cob), By Application (Furfuryl Alcohol), By End-use, By Region, And Segment Forecasts, 2023 – 2030. Report ID: 978–1–68038–301–0. September 7, 2023. https://www.grandviewresearch.com/industry-analysis/furfural-market

  42. Precedence Research (2023). Ferulic Acid Market (By Type: Synthesis, Natural; By Application: Cosmetic, Pharmaceutical Intermediates, Others; By Packaging: Interior Packaging, Exterior Packaging) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2032. https://www.precedenceresearch.com/ferulic-acid-market/amp

  43. Safaat, M., Wulan, P.P.D.K.: Technoeconomic Analysis of Integrated Bioethanol from Elephant Grass (Pennisetum purpureum) with Utilization of Its Residue and Lignin. Industria: Jurnal Teknologi dan Manajemen Agroindustri 11(1), 64–80 (2022)

    Article  Google Scholar 

  44. Fredsgaard, M., Hulkko, L.S.S., Chaturvedi, T., Thomsen, M.H.: Process simulation and techno-economic assessment of Salicornia sp.-based jet fuel refinery through Hermetia illucens sugars-to-lipids conversion and HEFA route. Biomass Bioenergy 150, 10 (2021)

    Article  Google Scholar 

  45. Taiwo, A.E., Tom-James, A., Falowo, O.A., Okoji, A., Adeyi, O., Olalere, A.O., Eloka-Eboka, A.: Techno-economic analysis of cellulase production by Trichoderma Reesei in submerged fermentation processes using a process simulator. S. Afr. J. Chem. Eng. 42, 98–105 (2022)

    Google Scholar 

Download references

Funding

This research was partly supported by Q2 Scheme Research Grant (Hibah Publikasi Artikel di Jurnal Internasional Kuartil Q2) No. NKB-678/UN2.RST/HKP.05.00/2022 from Directorate Research and Development Universitas Indonesia awarded to Apriliana Cahya Khayrani, Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apriliana Cahya Khayrani.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khayrani, A.C., Hidayatullah, I.M., Satyawan, I.L. et al. Techno-Economic Assessment of Ferulic Acid Bioproduction from Agro-industrial Waste Using Aspergillus niger. Waste Biomass Valor (2024). https://doi.org/10.1007/s12649-024-02457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12649-024-02457-9

Keywords

Navigation