Skip to main content
Log in

Fractionating Chitin-Glucan Complex and Coproducts from Pleurotus Ostreatus Mushrooms

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose:  A large amount of wasted mushroom stems are accumulated yearly by the mushroom industry. To reduce this waste, we have proposed a fractionation method to isolate several useful coproducts using reusable solvents. Methods: Coproducts were extracted by sequential solvent extraction before producing chitin-glucan complex from Pleurotus ostreatus (oyster) mushrooms. The extracted β-glucans, polyphenols, and proteins were confirmed by 3,5-dinitrosalicylic acid (DNS), Folin-Ciocalteau, and bicinchoninic acid (BCA) assays respectively. Extracted lipids were analyzed by gas chromatography-mass spectrometry (GC–MS). The chitin-glucan complex was characterized by Fourier-transform infrared spectroscopy (FT-IR), high performance liquid chromatography (HPLC), and powder X-ray diffraction (XRD). Results: The extract yield of chitin-glucan complex was 8.3%. The crystallinity index of the extracted chitin-glucan complex was 71.2% when compared to 85% for crustacean chitin. The reduced crystallinity in mushroom chitin was due to the presence of the residual β-glucans. Conclusion: The reported fractionation method uses less solvent and provides a greener alternative to producing chitin-glucan complex when compared to the conventional methods of using a large volume of harsh chemicals harmful to the environment. Further, fractionating several coproducts while producing the chitin-glucan complex will reduce the total processing cost.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Balan, V.: Challenges and opportunities in producing high-quality edible mushrooms from lignocellulosic biomass in a small scale. Appl. Microbiol. Biotechnol. 106, 1355–1374 (2022). https://doi.org/10.1007/s00253-021-11749-2

    Article  Google Scholar 

  2. Corrêa, R.C.G., Brugnari, T., Bracht, A., Peralta, R.M., Ferreira, I.C.F.R.: Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings. Trends Food Sci. Technol. 50, 103–117 (2016). https://doi.org/10.1016/j.tifs.2016.01.012

    Article  Google Scholar 

  3. Papoutsis, K., et al.: Recovery of ergosterol and vitamin D2 from mushroom waste—Potential valorization by food and pharmaceutical industries. Trends Food Sci. Technol. 99, 351–366 (2020). https://doi.org/10.1016/j.tifs.2020.03.005

    Article  Google Scholar 

  4. Leiva, F.J., Saenz-Díez, J.C., Martínez, E., Jiménez, E., Blanco, J.: Environmental impact of Agaricus Bisporus cultivation process. Eur. J. Agron. 71, 141–148 (2015). https://doi.org/10.1016/j.eja.2015.09.013

    Article  Google Scholar 

  5. Antunes, F., et al.: Valorization of mushroom by-products as a source of value-added compounds and potential applications. Molecules. 25(11), 2672 (2020). https://doi.org/10.3390/molecules25112672

    Article  Google Scholar 

  6. Jones, M., Kujundzic, M., John, S., Bismarck, A.: Crab vs. Mushroom: A review of crustacean and fungal chitin in wound treatment. Mar. Drugs (2020). https://doi.org/10.3390/md18010064

    Article  Google Scholar 

  7. Janvikul, W., Uppanan, P., Thavornyutikarn, B., Krewraing, J., Prateepasen, R.: In vitro comparative hemostatic studies of chitin, chitosan, and their derivatives. J. Appl. Polym. Sci. 102, 445–451 (2006). https://doi.org/10.1002/app.24192

    Article  Google Scholar 

  8. Song, X., et al.: Effects of degree of deacetylation on hemostatic performance of partially deacetylated chitin sponges. Carbohydr. Polym. (2021). https://doi.org/10.1016/j.carbpol.2021.118615

    Article  Google Scholar 

  9. Muzzareui, R.A.A.: Biochemical significance of exogenous chitins and chitosans in animals and patients. Carhohydr. Polym. 20, 7–16 (1993)

    Article  Google Scholar 

  10. Usami, Y., et al.: (1994)

  11. Ueno, H., et al.: Accelerating e!ects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials. 20(15), 1407–1414 (1999)

    Article  Google Scholar 

  12. Matica, M.A., Aachmann, F.L., Tøndervik, A., Sletta, H., Ostafe, V.: Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. Int. J. Mol. Sci. 20(23), 5889 (2019). https://doi.org/10.3390/ijms20235889

    Article  Google Scholar 

  13. Nawawi, W.M.F.B.W., Jones, M., Murphy, R.J., Lee, K.Y., Kontturi, E., Bismarck, A.: Nanomaterials derived from fungal sources-Is it the new hype? Biomacromolecules, 21(1), 30–55 (2020). https://doi.org/10.1021/acs.biomac.9b01141

  14. Lopata, A.L., O’Hehir, R.E., Lehrer, S.B.: Shellfish allergy. Clin. Exp. Allergy 40(6), 850–858 (2010). https://doi.org/10.1111/j.1365-2222.2010.03513.x

    Article  Google Scholar 

  15. Gow, N.A.R., Latge, J.-P., Munro, C.A.: The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 5(3), 10–1128 (2017). https://doi.org/10.1128/microbiolspec.funk-0035-2016

    Article  Google Scholar 

  16. Zhu, F., Du, B., Xu, B.: A critical review on production and industrial applications of beta-glucans. Food Hydrocoll. 52, 275–288 (2016). https://doi.org/10.1016/j.foodhyd.2015.07.003

    Article  Google Scholar 

  17. Mirończuk-Chodakowska, I., Kujawowicz, K., Witkowska, A.M.: Beta-glucans from fungi: Biological and health-promoting potential in the covid-19 pandemic era. Nutrients. 13(11), 3960 (2021). https://doi.org/10.3390/nu13113960

    Article  Google Scholar 

  18. Majtan, J., Jesenak, M.: β-Glucans: Multi-functional modulator of wound healing. Molecules 23(4), 803 (2018). https://doi.org/10.3390/molecules23040806

    Article  Google Scholar 

  19. Bergendiova, K., Tibenska, E., Majtan, J.: Pleuran (β-glucan from Pleurotus ostreatus) supplementation, cellular immune response and respiratory tract infections in athletes. Eur. J. Appl. Physiol. 111, 2033–2040 (2011). https://doi.org/10.1007/s00421-011-1837-z

    Article  Google Scholar 

  20. Meng, Y., Lyu, F., Xu, X., Zhang, L.: Recent advances in chain conformation and bioactivities of Triple-Helix polysaccharides. Biomacromolecules 21(5), 1653–1677 (2020). https://doi.org/10.1021/acs.biomac.9b01644

    Article  Google Scholar 

  21. Chen, J., Seviour, R.: Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol. Res. 111, 635–652 (2007). https://doi.org/10.1016/j.mycres.2007.02.011

    Article  Google Scholar 

  22. Morales, D., et al.: Isolation and comparison of α- and β-D-glucans from shiitake mushrooms (Lentinula edodes) with different biological activities. Carbohydr. Polym. 229, 115521 (2020)

    Article  Google Scholar 

  23. Ahmad, R., et al.: Isolation, identification, cultivation and determination of antimicrobial β-glucan from a wild-termite mushroom Termitomyces Heimii RFES 230662. Biocatal. Agric. Biotechnol. 37, 102187 (2021)

    Article  Google Scholar 

  24. Zhou, J., et al.: A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International 134,(2020)

    Article  Google Scholar 

  25. Erdmann, K., Cheung, B.W.Y., Schröder, H.: The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J. Nutr. Biochem. 19, 643–654 (2008).

    Article  Google Scholar 

  26. Goswami, B., Majumdar, S., Das, A., Barui, A., Bhowal, J.: Evaluation of bioactive properties of Pleurotus ostreatus mushroom protein hydrolysate of different degree of hydrolysis. LWT. 149, 111768 (2021)

    Article  Google Scholar 

  27. Paisansak, S., et al.: Angiotensin-I converting enzyme inhibitory peptide derived from the shiitake mushroom (Lentinula edodes). J. Food Sci. Technol. 58(1), 85–97 (2021). https://doi.org/10.1007/s13197-020-04517-z

    Article  Google Scholar 

  28. Kimatu, B.M., et al.: Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chem 230, 58–67 (2017). https://doi.org/10.1016/j.foodchem.2017.03.030

    Article  Google Scholar 

  29. Abdelshafy, A.M., et al.: A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Critical Reviews in Food Science and Nutrition. 62, 6204–6224 (2021). https://doi.org/10.1080/10408398.2021.1898335

    Article  Google Scholar 

  30. Taofiq, O., et al.: The contribution of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Research International. 76, 821–827 (2015). https://doi.org/10.1016/j.foodres.2015.07.044

    Article  Google Scholar 

  31. Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R., Malm, A.: Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Sci. Technol. 59, 689–694 (2014). https://doi.org/10.1016/j.lwt.2014.05.041

    Article  Google Scholar 

  32. Xu, D.P., Zheng, J., Zhou, Y., Li, Y., Li, S., Li, H.B.: Extraction of natural antioxidants from the Thelephora ganbajun mushroom by an ultrasound-assisted extraction technique and evaluation of antiproliferative activity of the extract against human cancer cells. Int J Mol Sci. 17(10), 1664 (2016). https://doi.org/10.3390/ijms17101664

    Article  Google Scholar 

  33. Yilmaz, A., Yildiz, S., Kilic, C., Can, Z.: Total phenolics, flavonoids, tannin contents and antioxidant properties of Pleurotus ostreatus cultivated on different wastes and sawdust. Int. J. Second. Metabol. 4, 1–9 (2016). https://doi.org/10.21448/ijsm.252052

    Article  Google Scholar 

  34. Günç Ergönül, P., Akata, I., Kalyoncu, F., Ergönül, B.: Fatty acid compositions of six wild edible mushroom species. The Scientific World Journal. (2013). https://doi.org/10.1155/2013/163964

    Article  Google Scholar 

  35. Karine Pedneault, P., Angers, A., Gosselin, Russell, J.T.: Fatty acid composition of lipids from mushrooms belonging to the family Boletaceae. Mycol. Res. 110, 1179–1183 (2006).

  36. Barreira, J.C.M., Oliveira, M.B.P.P., Ferreira, I.C.F.R.: Development of a novel methodology for the analysis of ergosterol in mushrooms. Food Anal. Methods. 7(1), 217–223 (2014). https://doi.org/10.1007/s12161-013-9621-9

    Article  Google Scholar 

  37. Taofiq, O., Fernandes, Ã., Barros, L., Barreiro, M.F., Ferreira, I.C.F.R.: UV-irradiated mushrooms as a source of vitamin D2: A review. Trends Food Sci. Technol. 70, 82–94 (2017). https://doi.org/10.1016/j.tifs.2017.10.008

    Article  Google Scholar 

  38. Nzekoue, F.K., Sun, Y., Caprioli, G., Vittori, S., Sagratini, G.: Effect of the ultrasound-assisted extraction parameters on the determination of ergosterol and vitamin D2 in Agaricus Bisporus Bisporus, A. Portobello, and Pleurotus ostreatus mushrooms. J. Food Compos. Anal. 109,(2022)

    Article  Google Scholar 

  39. Saini, R.K., et al.: Edible mushrooms show significant differences in sterols and fatty acid compositions. South Afr. J. Bot. 141, 344–356 (2021). https://doi.org/10.1016/j.sajb.2021.05.022

    Article  Google Scholar 

  40. Zhang, Y., Dai, L., Kong, X., Chen, L.: Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus. Int. J. Biol. Macromol. 51, 259–265 (2012). https://doi.org/10.1016/j.ijbiomac.2012.05.003

    Article  Google Scholar 

  41. Hassainia, A., Satha, H., Boufi, S.: Chitin from Agaricus Bisporus: Extraction and characterization. Int. J. Biol. Macromol. 117, 1334–1342 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.172

    Article  Google Scholar 

  42. Klaus, A., Kozarski, M., Niksic, M., Jakovljevic, D., Todorovic, N., Van Griensven, L.J.L.D.: Antioxidative activities and chemical characterization of polysaccharides extracted from the basidiomycete Schizophyllum commune. LWT 44(10), 2005–2011 (2011). https://doi.org/10.1016/j.lwt.2011.05.010

    Article  Google Scholar 

  43. Elmastas, M., Isildak, O., Turkekul, I., Temur, N.: Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J. Food Compos. Anal. 20, 3–4 (2007). https://doi.org/10.1016/j.jfca.2006.07.003

    Article  Google Scholar 

  44. Fazli Wan Nawawi, W.M., Lee, K.Y., Kontturi, E., Murphy, R.J., Bismarck, A.: Chitin Nanopaper from Mushroom Extract: Natural Composite of Nanofibers and Glucan from a Single Biobased Source. ACS Sustain. Chem. Eng. 7, 6492–6496 (2019) https://doi.org/10.1021/acssuschemeng.9b00721

  45. Bhanja, S.K., Rout, D., Patra, P., Sen, I.K., Nandan, C.K., Islam, S.S.: Water-insoluble glucans from the edible fungus Ramaria botrytis. Bioact. Carbohydr. Diet. Fibre. 3(2), 52–58 (2014). https://doi.org/10.1016/j.bcdf.2014.01.004

    Article  Google Scholar 

  46. Carlos Espõâ, J., Jolivet, S., Overeem, A., Wichers, H.J.: Agaritine from Agaricus Bisporus is capable of preventing melanin formation. Phytochemistry. 50(4), 555–563 (1999)

    Article  Google Scholar 

  47. Yilmaz, N., Solmaz, M., Türkekul, I., Elmastaş, M.: Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chem. 99(1), 168–174 (2006). https://doi.org/10.1016/j.foodchem.2005.08.017

    Article  Google Scholar 

  48. Mamidipally, P.K., Liu, S.X.: First approach on rice bran oil extraction using limonene. Eur. J. Lipid Sci. Technol. 106(2), 122–125 (2004). https://doi.org/10.1002/ejlt.200300891

    Article  Google Scholar 

  49. Wang, L., Weller, C.L.: Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 17, 300–312 (2006).

    Article  Google Scholar 

  50. Heleno, S.A., et al.: Optimization of ultrasound-assisted extraction to obtain mycosterols from Agaricus Bisporus L. by response surface methodology and comparison with conventional Soxhlet extraction. Food Chem. 197, 1054–1063 (2016).

  51. Sezer, Y., Süfer, Ã., Sezer, G.: Extraction of phenolic compounds from oven and microwave dried mushrooms (Agaricus Bisporus and Pleurotus Ostreatus) by using methanol, ethanol and aceton as solvents. Ind. J. Pharm. Educ. Res. 51(3), S393–S397 (2017). https://doi.org/10.5530/ijper.51.3s.55

    Article  Google Scholar 

  52. Rood, D.: Gas chromatography problem solving and troubleshooting. J. Chromatogr. Sci. 35, 404–404 (1997). https://doi.org/10.1093/chromsci/35.8.404

    Article  Google Scholar 

  53. Sławińska, A., et al.: Study on vitamin D2 stability in dried mushrooms during drying and storage. Food Chem. 199, 203–209 (2016). https://doi.org/10.1016/j.foodchem.2015.11.131

    Article  Google Scholar 

  54. di Mario, F., Rapanà, P., Tomati, U., Galli, E.: Chitin and chitosan from basidiomycetes. Int. J. Biol. Macromol. 43, 8–12 (2008). https://doi.org/10.1016/j.ijbiomac.2007.10.005

    Article  Google Scholar 

  55. Cui, J., Yu, Z., Lau, D.: Effect of acetyl group on mechanical properties of chitin/chitosan nanocrystal: A molecular dynamics study. Int. J. Mol. Sci. 17(1), 1–13 (2016). https://doi.org/10.3390/ijms17010061

    Article  Google Scholar 

  56. Miao, Q., et al.: Determination of chitosan content with ratio coefficient method and HPLC. Int. J. Biol. Macromol. 164, 384–388 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.013

    Article  Google Scholar 

  57. Ospina Álvarez, S.P., et al.: Comparison of extraction methods of chitin from ganoderma lucidum mushroom obtained in submerged culture. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/169071

    Article  Google Scholar 

  58. Mat Zin, M.I., Jimat, D.N., Wan Nawawi, W.M.F.: Physicochemical properties of fungal chitin nanopaper from shiitake (L. edodes), enoki (F. velutipes) and oyster mushrooms (P. ostreatus). Carbohydr. Polym. 281, 119038 (2022). https://doi.org/10.1016/j.carbpol.2021.119038

  59. Boureghda, Y., Satha, H., Bendebane, F.: Chitin-glucan complex from pleurotus ostreatus mushroom: physicochemical characterization and comparison of extraction methods. Waste Biomass Valorization. 12, 6139–6153 (2021). https://doi.org/10.1007/s12649-021-01449-3

    Article  Google Scholar 

  60. Siestsma, J.H., Wessels, J.G.H.: Chemical analysis of the hyphal wall of schizophyllum. Biochim. Biophys. Acta. 469(1), 225–239 (1976)

    Google Scholar 

Download references

Funding

The authors would like to thank the US Department of Defense for financial support (W911NF2010281) and US Department of Agriculture (2020–08884) for supporting this work financially.

Author information

Authors and Affiliations

Authors

Contributions

MA: Designing and executing experiments, data collection and writing the manuscript; WT: Data curation, editing and drafting figures; ISH: Executing experiments and data collection; RK: Executing experiments and data collection; JDS: Review and editing; SJW: Review and editing; AK: Project administration, funding acquisition, review and editing; MLR: Review and editing; VB: Conceptualization, methodology, supervision, writing—review and editing.

Corresponding author

Correspondence to Venkatesh Balan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 210.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayser, M., Tonny, W., Hernandez, I.S. et al. Fractionating Chitin-Glucan Complex and Coproducts from Pleurotus Ostreatus Mushrooms. Waste Biomass Valor 15, 2897–2910 (2024). https://doi.org/10.1007/s12649-023-02364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02364-5

Keywords

Navigation