Skip to main content
Log in

Concentrated Sulfuric Acid as a Catalyst for Chemical Recycling of Polycarbonate in Water

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work presents the chemical recycling of poly (bisphenol-a carbonate) (PC) pellets with a hydrolysis technique by using concentrated sulfuric acid (H2SO4) as the catalyst in water. The effects of H2SO4 concentration and reaction temperature on the rate of hydrolysis were explored. For that, the values of PC conversion as a function of reaction time were gathered by running PC hydrolysis experiments at H2SO4 concentrations within the range of 10M to 16M and reaction temperatures within the range of 110 to 150 °C. The kinetics of PC hydrolysis were described by considering a pseudo-first-order reaction model, which was consequently applied to calculate specific reaction rate constants. Afterward, the Arrhenius equation was used to determine the overall activation energy of PC hydrolysis. Distillation was used to recover the catalyst (H2SO4) after a PC hydrolysis test so that it is further characterized by titration and reused for PC hydrolysis to study the catalyst reusability. It was shown that H2SO4 can be recovered and reused up to 5 rounds by retaining its acid activity. Also, the effect of hydrolysis on the reduction of PC size was explored. Moreover, a hydrolysis mechanism of polycarbonate by aqueous H2SO4 solution was presented.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the corresponding author.

Abbreviations

BPA:

Bisphenol-a

DMSO-d6:

Deuterated dimethyl sulfoxide

FTIR :

Fourier-transform infrared spectroscopy

1H NMR :

Proton nuclear magnetic resonance

PC:

Poly (bisphenol-a carbonate)

[]:

Molar concentration

%:

Weight percentage

oC :

Degree of centigrade

ρpc :

Density of poly (bisphenol-a carbonate)

A :

Pre-exponential order

CPC :

Concentration of poly (bisphenol-a carbonate) at the reaction time t

CPCi :

Concentration of poly (bisphenol-a carbonate) at the initial time (t = 0)

cm:

Centimeter

Ea :

Overall activation energy

g:

Gram

H2SO4 :

Sulfuric acid

h:

Hour

J:

Joule

Kapp. :

Apparent reaction rate constant

KBr:

Potassium bromide

k:

Kilo

ksp. :

Specific reaction rate constant

Lchar :

Characteristic length

M:

Molar

MWBPA :

Molecular weight of bisphenol-a

MWPC :

Molecular weight of poly (bisphenol-a carbonate) unit

m:

Meter

mm:

Millimeter

mi :

Mass of poly (bisphenol-a carbonate) at the initial time (t = 0)

mL:

Milliliter

mt :

Mass of recovered poly (bisphenol-a carbonate) at reaction time t

\({\mathrm{m}}_{\mathrm{t}}^{\mathrm{^{\prime}}}\) :

Mass of produced bisphenol-a at time t

pH :

Potential of hydrogen

R:

Gas constant

R2 :

Linear correlation coefficient

s:

Second

T:

Reaction temperature in Kelvin

TR :

Reaction temperature

t:

Reaction time

X:

Conversion of poly (bisphenol-a carbonate) at the reaction time t

7.References

  1. Hotaka, T., et al.: Industrialization of automotive glazing by polycarbonate and hard-coating. Polym. J. 51(12), 1249–1263 (2019). https://doi.org/10.1038/s41428-019-0240-1

    Article  Google Scholar 

  2. De Vietro, N., et al.: Low pressure plasma modified polycarbonate: a transparent, low reflective and scratch resistant material for automotive applications. Appl. Surf. Sci. 307, 698–703 (2014). https://doi.org/10.1016/j.apsusc.2014.04.105

    Article  Google Scholar 

  3. Zhou, X., et al.: Life cycle assessment of polycarbonate production: proposed optimization toward sustainability. Resour. Conserv. Recycl. (2023). https://doi.org/10.1016/j.resconrec.2022.106765

    Article  Google Scholar 

  4. Alin, J., Hakkarainen, M.: Migration from polycarbonate packaging to food simulants during microwave heating. Polym. Degrad. Stab. 97(8), 1387–1395 (2012). https://doi.org/10.1016/j.polymdegradstab.2012.05.017

    Article  Google Scholar 

  5. Thorat, S.D., et al.: Physical properties of aliphatic polycarbonates made from CO2 and epoxides. J. Appl. Polym. Sci. 89(5), 1163–1176 (2003). https://doi.org/10.1002/app.12355

    Article  Google Scholar 

  6. Laot, C.M., et al.: Effects of cooling rate and physical aging on the gas transport properties in polycarbonate. Macromolecules 36(23), 8673–8684 (2003). https://doi.org/10.1021/ma021720o

    Article  Google Scholar 

  7. Ortmann, P., Heckler, I., Mecking, S.: Physical properties and hydrolytic degradability of polyethylene-like polyacetals and polycarbonates. Green Chem. 16(4), 1816–1827 (2014). https://doi.org/10.1039/C3GC42592D

    Article  Google Scholar 

  8. Migahed, M., Zidan, H.: Influence of UV-irradiation on the structure and optical properties of polycarbonate films. Curr. Appl. Phys. 6(1), 91–96 (2006). https://doi.org/10.1016/j.cap.2004.12.009

    Article  Google Scholar 

  9. Delbreilh, L., et al.: Fragility of a thermoplastic polymer. Influence of main chain rigidity in polycarbonate. Mater. Lett. 59(23), 2881–2885 (2005). https://doi.org/10.1016/j.matlet.2005.04.034

    Article  Google Scholar 

  10. Market value of polycarbonate worldwide from 2018 to 2028. Available from: https://www.statista.com/statistics/1102692/global-polycarbonate-market-size/

  11. Payne, J.M., et al.: Versatile chemical recycling strategies: value-added chemicals from polyester and polycarbonate waste. Chemsuschem (2022). https://doi.org/10.1002/cssc.202200255

    Article  Google Scholar 

  12. Saito, K., et al.: From plastic waste to polymer electrolytes for batteries through chemical upcycling of polycarbonate. J. Mater. Chem. A 8(28), 13921–13926 (2020). https://doi.org/10.1039/D0TA03374J

    Article  Google Scholar 

  13. Pant, D.: Polycarbonate waste management using glycerol. Process. Saf. Environ. Prot. 100, 281–287 (2016). https://doi.org/10.1016/j.psep.2015.12.012

    Article  Google Scholar 

  14. Wang, Y., et al.: Production and waste treatment of polyesters: application of bioresources and biotechniques. Crit. Rev. Biotechnol. (2022). https://doi.org/10.1080/07388551.2022.2039590

    Article  Google Scholar 

  15. Lamb, J.B., et al.: Plastic waste associated with disease on coral reefs. Science 359(6374), 460–462 (2018). https://doi.org/10.1126/science.aar3320

    Article  Google Scholar 

  16. Colmenero, A.I., et al.: Plastic debris straps on threatened blue shark Prionace glauca. Mar. Pollut. Bull. 115(1–2), 436–438 (2017). https://doi.org/10.1016/j.marpolbul.2017.01.011

    Article  Google Scholar 

  17. Gondal, A., et al.: Advances in plastic pollution prevention and their fragile effects on soil, water, and air continuums.  Int. J. Environ. Sci. Technol. (2022). https://doi.org/10.1007/s13762-022-04607-9

    Article  Google Scholar 

  18. He, D., et al.: Microplastics in soils: analytical methods, pollution characteristics and ecological risks. TrAC Trends Anal. Chem. 109, 163–172 (2018). https://doi.org/10.1016/j.trac.2018.10.006

    Article  Google Scholar 

  19. Levi, P.G., Cullen, J.M.: Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 52(4), 1725–1734 (2018). https://doi.org/10.1021/acs.est.7b04573

    Article  Google Scholar 

  20. Cabernard, L., et al.: Growing environmental footprint of plastics driven by coal combustion. Nat. Sustain. 5(2), 139–148 (2022). https://doi.org/10.1038/s41893-021-00807-2

    Article  Google Scholar 

  21. Dormer, A., et al.: Carbon footprint analysis in plastics manufacturing. J. Clean. Prod. 51, 133–141 (2013). https://doi.org/10.1016/j.jclepro.2013.01.014

    Article  Google Scholar 

  22. Astrup, T., Fruergaard, T., Christensen, T.H.: Recycling of plastic: accounting of greenhouse gases and global warming contributions. Waste Manag. Res. 27(8), 763–772 (2009). https://doi.org/10.1177/0734242X09345868

    Article  Google Scholar 

  23. Delva, L., et al.: On the role of flame retardants in mechanical recycling of solid plastic waste. Waste Manag. 82, 198–206 (2018). https://doi.org/10.1016/j.wasman.2018.10.030

    Article  Google Scholar 

  24. Antonakou, E., et al.: Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS. Waste Manag. 34(12), 2487–2493 (2014). https://doi.org/10.1016/j.wasman.2014.08.014

    Article  Google Scholar 

  25. Liu, Y., Lu, X.B.: Chemical recycling to monomers: industrial bisphenol-A-polycarbonates to novel aliphatic polycarbonate materials. J. Polym. Sci. 60(24), 3256–3268 (2022). https://doi.org/10.1002/pol.20220118

    Article  Google Scholar 

  26. Hamad, K., Kaseem, M., Deri, F.: Recycling of waste from polymer materials: an overview of the recent works. Polym. Degrad. Stab. 98(12), 2801–2812 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.09.025

    Article  Google Scholar 

  27. Shen, M., et al.: Can incineration completely eliminate plastic wastes? An investigation of microplastics and heavy metals in the bottom ash and fly ash from an incineration plant. Sci. Total Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.146528

    Article  Google Scholar 

  28. Demetrious, A., Crossin, E.: Life cycle assessment of paper and plastic packaging waste in landfill, incineration, and gasification-pyrolysis. J. Mater. Cycles Waste Manag. 21, 850–860 (2019). https://doi.org/10.1007/s10163-019-00842-4

    Article  Google Scholar 

  29. Canopoli, L., et al.: Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Waste Manag. 76, 55–67 (2018). https://doi.org/10.1016/j.wasman.2018.03.043

    Article  Google Scholar 

  30. Yang, Z., et al.: Is incineration the terminator of plastics and microplastics? J. Hazard. Mater. 401, 123429 (2021). https://doi.org/10.1016/j.jhazmat.2020.123429

    Article  Google Scholar 

  31. Cudjoe, D., Wang, H.: Plasma gasification versus incineration of plastic waste: Energy, economic and environmental analysis. Fuel Process. Technol. 237, 107470 (2022). https://doi.org/10.1016/j.fuproc.2022.107470

    Article  Google Scholar 

  32. Šala, M., et al.: Effect of atmosphere and catalyst on reducing bisphenol A (BPA) emission during thermal degradation of polycarbonate. Chemosphere 78(1), 42–45 (2010). https://doi.org/10.1016/j.chemosphere.2009.10.036

    Article  Google Scholar 

  33. Shen, M., et al.:  Microplastics in landfill and leachate: Occurrence, environmental behavior and removal strategies. Chemosphere (2022). https://doi.org/10.1016/j.chemosphere.2022.135325

    Article  Google Scholar 

  34. Kabir, M.S., et al.: Microplastics in landfill leachate: sources, detection, occurrence, and removal. Environ. Sci. Ecotechnol. (2023). https://doi.org/10.1016/j.ese.2023.100256

    Article  Google Scholar 

  35. Alemayehu, T., et al.: Assessment of the impact of landfill leachate on groundwater and surrounding surface water: a case study of Mekelle city. North. Ethiop. Sustai. Water Resour. Manag. 5, 1641–1649 (2019). https://doi.org/10.1007/s40899-019-00328-z

    Article  Google Scholar 

  36. Hou, P., et al.: Life cycle assessment of end-of-life treatments for plastic film waste. J. Clean. Prod. 201, 1052–1060 (2018). https://doi.org/10.1016/j.jclepro.2018.07.278

    Article  Google Scholar 

  37. Bishop, G., Styles, D., Lens, P.N.: Recycling of European plastic is a pathway for plastic debris in the ocean. Environ. Int. 142, 105893 (2020). https://doi.org/10.1016/j.envint.2020.105893

    Article  Google Scholar 

  38. Cordier, M., Uehara, T.: How much innovation is needed to protect the ocean from plastic contamination? Sci. Total. Environ. 670, 789–799 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.258

    Article  Google Scholar 

  39. Ragaert, K., Delva, L., Van Geem, K.: Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 24–58 (2017). https://doi.org/10.1016/j.wasman.2017.07.044

    Article  Google Scholar 

  40. Volk, R., et al.: Techno-economic assessment and comparison of different plastic recycling pathways: a German case study. J. Ind. Ecol. 25(5), 1318–1337 (2021). https://doi.org/10.1111/jiec.13145

    Article  Google Scholar 

  41. Huysveld, S., et al.: Technical and market substitutability of recycled materials: calculating the environmental benefits of mechanical and chemical recycling of plastic packaging waste. Waste Manag. 152, 69–79 (2022). https://doi.org/10.1016/j.wasman.2022.08.006

    Article  Google Scholar 

  42. Schyns, Z.O., Shaver, M.P.: Mechanical recycling of packaging plastics: a review. Macromol. Rapid Commun. 42(3), 2000415 (2021). https://doi.org/10.1002/marc.202000415

    Article  Google Scholar 

  43. Vollmer, I., et al.: Beyond mechanical recycling: giving new life to plastic waste. Angew. Chem. Int. Ed. 59(36), 15402–15423 (2020). https://doi.org/10.1002/anie.201915651

    Article  Google Scholar 

  44. La Mantia, F., Correnti, A.: Effect of processing conditions on the degradation and on the recycling of polycarbonate. Prog. Rubber Plast. Recycl. Technol. 19(3), 135–142 (2003). https://doi.org/10.1177/147776060301900301

    Article  Google Scholar 

  45. Karsli, N.G., Yilmaz, T.: From polymeric waste to potential industrial product: modification of recycled polycarbonate. J. Elastomers Plast. 54(5), 857–876 (2022). https://doi.org/10.1177/00952443221087351

    Article  Google Scholar 

  46. Coates, G.W., Getzler, Y.D.: Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5(7), 501–516 (2020). https://doi.org/10.1038/s41578-020-0190-4

    Article  Google Scholar 

  47. Kim, J.G.: Chemical recycling of poly (bisphenol A carbonate). Polym. Chem. 11(30), 4830–4849 (2020). https://doi.org/10.1039/C9PY01927H

    Article  Google Scholar 

  48. Davidson, M.G., Furlong, R.A., McManus, M.C.: Developments in the life cycle assessment of chemical recycling of plastic waste—a review. J. Clean. Prod. (2021). https://doi.org/10.1016/j.jclepro.2021.126163

    Article  Google Scholar 

  49. Chen, X., Wang, Y., Zhang, L.: Recent progress in the chemical upcycling of plastic wastes. Chemsuschem 14(19), 4137–4151 (2021). https://doi.org/10.1002/cssc.202100868

    Article  Google Scholar 

  50. Zheng, K., et al.: Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem. Soc. Rev. (2023). https://doi.org/10.1039/D2CS00688J

    Article  Google Scholar 

  51. Arturi, K.R., et al.: Recovery of value-added chemicals by solvolysis of unsaturated polyester resin. J. Clean. Prod. 170, 131–136 (2018). https://doi.org/10.1016/j.jclepro.2017.08.237

    Article  Google Scholar 

  52. Antonakou, E., et al.: Catalytic and thermal pyrolysis of polycarbonate in a fixed-bed reactor: the effect of catalysts on products yields and composition. Polym. Degrad. Stab. 110, 482–491 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.10.007

    Article  Google Scholar 

  53. Lee, T., et al.: Functional use of CO2 to mitigate the formation of bisphenol A in catalytic pyrolysis of polycarbonate. J. Hazard. Mater. 423, 126992 (2022). https://doi.org/10.1016/j.jhazmat.2021.126992

    Article  Google Scholar 

  54. Apaydin-Varol, E., Polat, S., Pütün, A.: Pyrolysis kinetics and thermal decomposition behavior of polycarbonate-a TGA-FTIR study. Thermal Sci.  (2014). https://doi.org/10.2298/tsci1403833a

    Article  Google Scholar 

  55. Wang, J., et al.: Promoting aromatic hydrocarbon formation via catalytic pyrolysis of polycarbonate wastes over Fe-and Ce-loaded aluminum oxide catalysts. Environ. Sci. Technol. 54(13), 8390–8400 (2020). https://doi.org/10.1021/acs.est.0c00899

    Article  Google Scholar 

  56. Kim, D., et al.: Kinetics of polycarbonate glycolysis in ethylene glycol. Ind. Eng. Chem. Res. 48(2), 685–691 (2009). https://doi.org/10.1021/ie8010947

    Article  Google Scholar 

  57. Quaranta, E., Minischetti, C.C., Tartaro, G.: Chemical recycling of poly (bisphenol A carbonate) by glycolysis under 1, 8-diazabicyclo [5.4. 0] undec-7-ene catalysis. ACS omega 3(7), 7261–7268 (2018). https://doi.org/10.1021/acsomega.8b01123

    Article  Google Scholar 

  58. Li, B., et al.: Process analysis of controllable polycarbonate depolymerization in ethylene glycol. Prog. Rubber Plast. Recycl. Technol. 33(1), 39–50 (2017). https://doi.org/10.1177/147776061703300103

    Article  Google Scholar 

  59. Nifant’ev, I.E., et al.: Chemical recycling and upcycling of poly (Bisphenol A carbonate) via metal acetate catalyzed glycolysis. Polym. Degrad. Stab. 207, 110210 (2023). https://doi.org/10.1016/j.polymdegradstab.2022.110210

    Article  Google Scholar 

  60. Liu, F., et al.: Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac]. J. Hazard. Mater. 189(1–2), 249–254 (2011). https://doi.org/10.1016/j.jhazmat.2011.02.032

    Article  Google Scholar 

  61. Guo, J., et al.: Efficient alcoholysis of polycarbonate catalyzed by recyclable lewis acidic ionic liquids. Ind. Eng. Chem. Res. 57(32), 10915–10921 (2018). https://doi.org/10.1021/acs.iecr.8b02201

    Article  Google Scholar 

  62. Liu, M., et al.: Pushing the limits in alcoholysis of waste polycarbonate with DBU-based ionic liquids under metal-and solvent-free conditions. ACS Sustai. Chem. Eng. 6(10), 13114–13121 (2018). https://doi.org/10.1021/acssuschemeng.8b02650

    Article  Google Scholar 

  63. Do, T., Baral, E.R., Kim, J.G.: Chemical recycling of poly (bisphenol A carbonate): 1, 5, 7-Triazabicyclo [4.4. 0]-dec-5-ene catalyzed alcoholysis for highly efficient bisphenol A and organic carbonate recovery. Polymer 143, 106–114 (2018). https://doi.org/10.1016/j.polymer.2018.04.015

    Article  Google Scholar 

  64. Liu, Y.-Y., et al.: Mesoporous alumina modified calcium catalyst for alcoholysis of polycarbonate. J. Taiwan Inst. Chem. Eng. 86, 222–229 (2018). https://doi.org/10.1016/j.jtice.2018.02.028

    Article  Google Scholar 

  65. Song, X., et al.: Methanolysis of polycarbonate into valuable product bisphenol A using choline chloride-based deep eutectic solvents as highly active catalysts. Chem. Eng. J. 388, 124324 (2020). https://doi.org/10.1016/j.cej.2020.124324

    Article  Google Scholar 

  66. Quaranta, E., et al.: Chemical recycling of poly-(bisphenol A carbonate) by diaminolysis: a new carbon-saving synthetic entry into non-isocyanate polyureas (NIPUreas). J. Hazard. Mater. (2021). https://doi.org/10.1016/j.jhazmat.2020.123957

    Article  Google Scholar 

  67. Wu, C.-H., et al.: 100% atom-economy efficiency of recycling polycarbonate into versatile intermediates. ACS Sustain. Chem. Eng. 6(7), 8964–8975 (2018). https://doi.org/10.1021/acssuschemeng.8b01326

    Article  Google Scholar 

  68. Hata, S., et al.: Chemical conversion of poly (carbonate) to 1, 3-dimethyl-2-imidazolidinone (DMI) and bisphenol A: a practical approach to the chemical recycling of plastic wastes. Polymer 43(7), 2109–2116 (2002). https://doi.org/10.1016/S0032-3861(01)00800-X

    Article  Google Scholar 

  69. Maia, J., et al.: Effect of amines in the release of bisphenol A from polycarbonate baby bottles. Food Res. Int. 43(5), 1283–1288 (2010). https://doi.org/10.1016/j.foodres.2010.03.014

    Article  Google Scholar 

  70. Mormann, W., Spitzer, D.: Ammonolysis of polycarbonates with (supercritical) ammonia: an alternative for chemical recycling. Advances in Polycarbonates 898, 244–261 (2005). https://doi.org/10.1021/bk-2005-0898.ch018

    Article  Google Scholar 

  71. Fish, C., Method for direct ammonolysis of polycarbonate-containing materials and products. (2016). Available from:  https://patents.google.com/patent/US9328046B2/en

  72. Bell, P.W., et al., Method for direct ammonolysis of polycarbonate-containing materials and products. (2014) Available from:   https://patents.google.com/patent/WO2015057682A1/RED_FLAGS_Oct.2007_.pdf

  73. Jung, J.H., Ree, M., Kim, H.: Acid-and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters. Catal. Today 115(1–4), 283–287 (2006). https://doi.org/10.1016/j.cattod.2006.02.060

    Article  Google Scholar 

  74. Grause, G., et al.: High-value products from the catalytic hydrolysis of polycarbonate waste. Polym. J. 42(6), 438–442 (2010). https://doi.org/10.1038/pj.2010.21

    Article  Google Scholar 

  75. Pan, Z., Chou, I.-M., Burruss, R.C.: Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy. Green Chem. 11(8), 1105–1107 (2009). https://doi.org/10.1039/B904810N

    Article  Google Scholar 

  76. Pickett, J.E., Coyle, D.J.: Hydrolysis kinetics of condensation polymers under humidity aging conditions. Polym. Degrad. Stab. 98(7), 1311–1320 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.04.001

    Article  Google Scholar 

  77. Quaranta, E.: Rare Earth metal triflates M (O3SCF3) 3 (M= Sc, Yb, La) as Lewis acid catalysts of depolymerization of poly-(bisphenol A carbonate) via hydrolytic cleavage of carbonate moiety: Catalytic activity of La (O3SCF3) 3. Appl. Catal. B 206, 233–241 (2017). https://doi.org/10.1016/j.apcatb.2017.01.007

    Article  Google Scholar 

  78. Quaranta, E., et al.: Using a natural chlorite as catalyst in chemical recycling of waste plastics: hydrolytic depolymerization of poly-[bisphenol A carbonate] promoted by clinochlore. Waste Manag. 120, 642–649 (2021). https://doi.org/10.1016/j.wasman.2020.10.031

    Article  Google Scholar 

  79. Wang, J., et al.: Converting polycarbonate and polystyrene plastic wastes intoaromatic hydrocarbons via catalytic fast co-pyrolysis. J. Hazard. Mater. 386, 121970 (2020). https://doi.org/10.1016/j.jhazmat.2019.121970

    Article  Google Scholar 

  80. Wei, X., et al.: New Insights into the pyrolysis behavior of polycarbonates: a study based on DFT and ReaxFF-MD simulation under nonisothermal and isothermal conditions. Energy Fuels 35(6), 5026–5038 (2021). https://doi.org/10.1021/acs.energyfuels.1c00133

    Article  Google Scholar 

  81. Qin, J., et al.: Generation of microplastic particles during degradation of polycarbonate films in various aqueous media and their characterization. J. Hazard. Mater. 415, 125640 (2021). https://doi.org/10.1016/j.jhazmat.2021.125640

    Article  Google Scholar 

  82. Abedsoltan, H., Catalysts with Increased Surface Affinity for Chemical Recycling of PET Waste.2022.Available from: http://rave.ohiolink.edu/etdc/view?acc_num=toledo1659712780892611.

  83. Jiang, T.-W., et al.: Recycling waste polycarbonate to bisphenol A-based oligoesters as epoxy-curing agents, and degrading epoxy thermosets and carbon fiber composites into useful chemicals. ACS Sustain. Chem. Eng. 10(7), 2429–2440 (2022). https://doi.org/10.1021/acssuschemeng.1c07247

    Article  Google Scholar 

  84. Mancini, S.D., Zanin, M.: Post consumer pet depolymerization by acid hydrolysis. Polym. Plast. Technol. Eng. 46(2), 135–144 (2007). https://doi.org/10.1080/03602550601152945

    Article  Google Scholar 

  85. Yoshioka, T., Sato, T., Okuwaki, A.: Hydrolysis of waste PET by sulfuric acid at 150 C for a chemical recycling. J. Appl. Polym. Sci. 52(9), 1353–1355 (1994). https://doi.org/10.1002/app.1994.070520919

    Article  Google Scholar 

  86. Yoshioka, T., Motoki, T., Okuwaki, A.: Kinetics of hydrolysis of poly (ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model. Ind. Eng. Chem. Res. 40(1), 75–79 (2001). https://doi.org/10.1021/ie000592u

    Article  Google Scholar 

  87. Zhang, L., et al.: Hydrolysis of poly (ethylene terephthalate) waste bottles in the presence of dual functional phase transfer catalysts. J. Appl. Polym. Sci. 130(4), 2790–2795 (2013). https://doi.org/10.1002/app.39497

    Article  Google Scholar 

  88. Song, X., et al.: Hydrolysis of polycarbonate catalyzed by ionic liquid [Bmim][Ac]. J. Hazard. Mater. 244, 204–208 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.044

    Article  Google Scholar 

  89. Yoshioka, T., Okayama, N., Okuwaki, A.: Kinetics of hydrolysis of PET powder in nitric acid by a modified shrinking-core model. Ind. Eng. Chem. Res. 37(2), 336–340 (1998). https://doi.org/10.1021/ie970459a

    Article  Google Scholar 

  90. Grause, G., et al.: Pyrolytic hydrolysis of polycarbonate in the presence of earth-alkali oxides and hydroxides. Polym. Degrad. Stab. 94(7), 1119–1124 (2009). https://doi.org/10.1016/j.polymdegradstab.2009.03.014

    Article  Google Scholar 

  91. Tsintzou, G.P., Achilias, D.S.: Chemical recycling of polycarbonate based wastes using alkaline hydrolysis under microwave irradiation. Waste Biomass Valorization 4, 3–7 (2013). https://doi.org/10.1007/s12649-012-9125-7

    Article  Google Scholar 

  92. Wu, D., et al.: Prediction of polycarbonate degradation in natural atmospheric environment of China based on BP-ANN model with screened environmental factors. Chem. Eng. J. 399, 125878 (2020). https://doi.org/10.1016/j.cej.2020.125878

    Article  Google Scholar 

  93. Polli, H., Pontes, L., Araujo, A.: Application of model-free kinetics to the study of thermal degradation of polycarbonate. J. Therm. Anal. Calorim. 79, 383–387 (2005). https://doi.org/10.1007/s10973-005-0070-6

    Article  Google Scholar 

  94. Siddiqui, M.N., et al.: Pyrolysis mechanism and thermal degradation kinetics of poly (bisphenol A carbonate)-based polymers originating in waste electric and electronic equipment. J. Anal. Appl. Pyrol. 132, 123–133 (2018). https://doi.org/10.1016/j.jaap.2018.03.008

    Article  Google Scholar 

  95. Huang, W., et al.: Degradation of polycarbonate to produce bisphenol A catalyzed by imidazolium-based DESs under metal-and solvent-free conditions. RSC Adv. 11(3), 1595–1604 (2021). https://doi.org/10.1039/D0RA09215K

    Article  Google Scholar 

  96. Kim, D., et al.: Kinetics of polycarbonate methanolysis by a consecutive reaction model. Ind. Eng. Chem. Res. 48(14), 6591–6599 (2009). https://doi.org/10.1021/ie801893v

    Article  Google Scholar 

  97. Zaaba, N.F., Jaafar, M.: A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 60(9), 2061–2075 (2020). https://doi.org/10.1002/pen.25511

    Article  Google Scholar 

  98. Linde, E., Giron, N.H., Celina, M.C.: Diffusion-limited hydrolysis in polymeric materials. Polym. Degrad. Stab. 204, 110095 (2022). https://doi.org/10.1016/j.polymdegradstab.2022.110095

    Article  Google Scholar 

  99. Li, X.K., et al.: Reaction kinetics and mechanism of catalyzed hydrolysis of waste PET using solid acid catalyst in supercritical CO2. AIChE J. 61(1), 200–214 (2015). https://doi.org/10.1002/aic.14632

    Article  Google Scholar 

  100. Yang, W., et al.: Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid. Waste Manag. 135, 267–274 (2021). https://doi.org/10.1016/j.wasman.2021.09.009

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Dr. Maria R. Coleman of the University of Toledo for her support and guidance.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Abedsoltan.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 511 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abedsoltan, H. Concentrated Sulfuric Acid as a Catalyst for Chemical Recycling of Polycarbonate in Water. Waste Biomass Valor 15, 2793–2806 (2024). https://doi.org/10.1007/s12649-023-02326-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02326-x

Keywords

Navigation