Skip to main content
Log in

Advances in plastic pollution prevention and their fragile effects on soil, water, and air continuums

  • Review
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Plastics are flexible and can be molded and pressed into solid things in a range of shapes and sizes, allowing them to be widely used in several fields of life. A rising accretion of plastic wastes has become a serious societal and environmental problem. Various forms of plastics may disrupt soil or land and the aquatic continuum in a variety of ways. Microbial and enzymatic biodegradation has been reported recently, which opens the door to developing biological treatment methods for plastic trash. Various aspects that interrupt the enzymatic and microbiological processes motivate the scientist to search for new sustainable procedures that have fewer or no detrimental effects. Therefore, finding new ways to get rid of plastic wastes is crucial. In this review, we have briefly described the microbes and enzymes capable of degrading a wide range of commonly used synthetic plastics, including polypropylene, polyethylene, polyurethane, and polyvinyl chloride, polystyrene, and polyethylene terephthalate. Furthermore, we have emphasized plastic products depolymerization through nanotechnology and genetic engineering, as well as current efforts to use such products as fuel sources, light-weight steel, and aluminum manufacture of high-value compounds. Taken together, these results will lead to the development of a concept for bio-upcycling plastic wastes by establishing a link between plastic waste biodegradation and the production of valuable compounds by microorganisms. Finally, but certainly not least, the solutions that can be readily implemented by humans are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Acero HE, Ribitsch D, Steinkellner G, Gruber K, Greimel K, Eiteljoerg I et al (2011) Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from thermobifida. Macromolecules 44:4632–4640. https://doi.org/10.1021/ma200949p

    Article  CAS  Google Scholar 

  • Algozeeb WA, Savas PE, Yuan Z, Wang Z, Kittrell C, Hall JN, Tour JM (2022) Plastic Waste Product Captures Carbon Dioxide in Nanometer Pores. ACS Nano 16(5):7284–7290

    Article  CAS  Google Scholar 

  • Andrady AL (2015) Plastics and environmental sustainability: Fact and fiction. Wiley, Hoboken

    Book  Google Scholar 

  • AZO NANO, 2021. Microscopic magnetic carbon coil: how nanotechnology could degrade microplastics. https://www.azonano.com/article.aspx?ArticleID=5770. Accessed date [19 Jul 2022]

  • Barrowclough D, Birkbeck CD (2022) Transforming the global plastics economy: the role of economic policies in the global governance of plastic pollution. Soc Sci 11(1):26

    Article  Google Scholar 

  • Behera AK, Avancha S, Basak RK, Sen R, Adhikari B (2012) Fabrication and characterizations of biodegradable jute reinforced soy based green composites. Carbohyd Polym 88(1):329–335. https://doi.org/10.1016/j.carbpol.2011.12.023

    Article  CAS  Google Scholar 

  • Berly McCoy. 2019. The PBS NewsHour’s 2019 AAAS Mass Media science & engineering fellow. https://www.pbs.org/newshour/science/this-new-nanotech-could-help-clean-up-earths-microplastics. Accessed date [21 Jul 2022]

  • Bläsing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435. https://doi.org/10.1016/j.scitotenv.2017.08.086

    Article  CAS  Google Scholar 

  • Brandon JA, Jones W, Ohman MD (2019) Multidecadal increase in plastic particles in coastal ocean sediments. Sci Adv 5(9):0587

    Article  Google Scholar 

  • Carniel A, Valoni É, Junior JN, da Conceição Gomes A, de Castro AM (2017) Lipase from Candida antarctica (CALB) and cutinase from humicola insolens act synergistically for PET hydrolysis to terephthalic acid. Process Biochem 59:84–90. https://doi.org/10.1016/j.procbio.2016.07.023

    Article  CAS  Google Scholar 

  • Chen J, Zhang S, Allen DT, Subramaniam B, Licence P (2021) Expectations for manuscripts contributing to the field on management of synthetic chemicals in ACS sustainable chemistry & engineering. ACS Sustain Chem Eng 9(9):3376–3378

    Article  CAS  Google Scholar 

  • Cheng Y, Chen J, Bao M, Li Y (2022) Surface modification ability of Paracoccus sp. indicating its potential for polyethylene terephthalate degradation. Int Biodeterior Biodegrad 173:105454

    Article  CAS  Google Scholar 

  • Chien-Chieh H, Wang CY, Tsai MC, Rumwald LG, Lecaros WSH, Tsai HA, Lee KR, Lai JY (2022) Polyimide/Cu-doped TiO2 Janus membranes for direct capture and photocatalytic reduction of carbon dioxide from air. Chem Eng J 450:138008

    Article  Google Scholar 

  • Corbion 2016. PLA bioplastics. Available from https://www.corbion.com/media/75646/corbion_bioplastics_brochure.pdf. Accessed on 3 Jul 2019.

  • Dermawan D, Wang YF, You SJ, Jiang JJ, Hsieh YK (2022) Impact of climatic and non-climatic stressors on ocean life and human health: a review. Sci Total Enviro 821:153387

    Article  CAS  Google Scholar 

  • Eisfeld-Pierantonio SM, Pierantonio N, Simmonds MP (2022) The impact of marine debris on cetaceans with consideration of plastics generated by the COVID-19 pandemic. Environ Pollut 300:118967

    Article  CAS  Google Scholar 

  • Fagiano V, Compa M, Alomar C, García-Marcos K, Deudero S (2022) Marine plastics in Mediterranean Islands: evaluating the distribution and composition of plastic pollution in the surface waters along four islands of the Western Sea Basin. Environ Pollut 305:119268

    Article  CAS  Google Scholar 

  • FAU, 2021. Effective method for removing nanoplastics and microplastics from water. https://www.fau.eu/2021/04/19/news/research/effective-method-for-removing-nanoplastics-and-microplastics-from-water/. Accessed date [19 Jul 2022]

  • Fukuhara Y, Kasai D, Katayama Y, Fukuda M, Masai E (2008) Enzymatic properties of terephthalate 1,2-dioxygenase of Comamonas sp. strain E6. Biosci Biotechnol Biochem 72:2335–2341. https://doi.org/10.1271/bbb.80236

    Article  CAS  Google Scholar 

  • Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3(7):e1700782

    Article  Google Scholar 

  • Green Science Alliance. 2019. Nanocellulose+PLA composite material. Available from https://www.gsalliance.co.jp/en/wp-content/uploads/2019/06/CNF-PLA-E.pdf. Accessed on 30 Jul 2019.

  • Han Y, Duan X, Yang L, Nilsson-Payant BE, Wang P, Duan F, Tang X, Yaron TM, Zhang T, Uhl S, Bram Y, Richardson C, Zhu J, Zhao Z, Redmond D, Houghton S, Nguyen DHT, Dong X, Wang X, Jessurun J, Borczuk A, Huang Y, Johnson JL, Liu Y, Xiang J, Wang H, Cantley LC, tenOever BR, Ho DD, Pan FC, Evans T, Chen HJ, Schwartz RE, Chen S (2021) Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589(7841):270–275

    Article  CAS  Google Scholar 

  • Hossain R, Islam MT, Shanker R, Khan D, Locock KES, Ghose A, Schandl H, Dhodapkar R, Sahajwalla V (2022) Plastic waste management in india: challenges opportunities, and roadmap for circular economy. Sustainability 14(8):4425

    Article  CAS  Google Scholar 

  • Howard A, Matarić MJ, Sukhatme GS (2002) Mobile sensor network deployment using potential fields: a distributed, scalable solution to the area coverage problem. Distributed autonomous robotic systems 5. Springer, Tokyo, pp 299–308

    Chapter  Google Scholar 

  • Hwang DH, Lee ME, Cho BH, Oh JW, You SK, Ko YJ, Hyeon JE, Han SO (2022) Enhanced biodegradation of waste poly (ethylene terephthalate) using a reinforced plastic degrading enzyme complex. Sci Total Environ 842:156890

    Article  CAS  Google Scholar 

  • Ilyas RA, Zuhri MYM, Aisyah HA, Asyraf MRM, Hassan SA, Zainudin ES, Sapuan SM, Sharma S, Bangar SP, Jumaidin R, Nawab Y, Faudzi AAM, Abral H, Asrofi M, Syafri E, Sari NH (2022) Natural fiber-reinforced polylactic acid, polylactic acid blends and their composites for advanced applications. Polymers 14(1):202

    Article  CAS  Google Scholar 

  • Iroegbu AOC, Ray SS, Mbarane V, Bordado JC, Sardinha JP (2021) Plastic pollution: a perspective on matters arising: challenges and opportunities. ACS Omega 6(30):19343–19355

    Article  CAS  Google Scholar 

  • Jahnavi G, Prashanthi GS, Sravanthi K, Rao LV (2017) Status of availability of lignocellulosic feed stocks in India: biotechnological strategies involved in the production of bioethanol. Renew Sustain Energy Rev 73:798–820

    Article  CAS  Google Scholar 

  • Jaikumar G, Brun NR, Vijver MG, Bosker T (2019) Reproductive toxicity of primary and secondary microplastics to three cladocerans during chronic exposure. Environ Pollut 249:638–646

    Article  CAS  Google Scholar 

  • Jia H-H, Xu Y-T, Yin Z-P, Wu X-M, Qing M, Fan Y-J, Song X, Xie K-D, Xie Z-Z, Xu Q, Deng X-X, Guo W-W (2021) Transcriptomes and DNA methylomes in apomictic cells delineate nuclear embryogenesis initiation in citrus. DNA Res 28(5):1–16. https://doi.org/10.1093/dnares/dsab014

    Article  CAS  Google Scholar 

  • Kalaiselvan K, Pandurangan P, Velu R, Robinson J (2022) Occurrence of microplastics in gastrointestinal tracts of planktivorous fish from the Thoothukudi region. Environ Sci Pollut Res 29(29):44723–44731

    Article  CAS  Google Scholar 

  • Kang J, Zhou L, Duan X, Sun H, Ao Z, Wang S (2019) Degradation of cosmetic microplastics via functionalized carbon nanosprings. Matter 1(3):745–758. https://doi.org/10.1016/j.matt.2019.06.004

    Article  CAS  Google Scholar 

  • Luckachan GE, Pillai CKS (2011) Biodegradable polymers: a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  CAS  Google Scholar 

  • Lusher AL, Hernandez-Milian G, Berrow S, Rogan E, O’Connor I (2018) Incidence of marine debris in cetaceans stranded and bycaught in Ireland: recent findings and a review of historical knowledge. Environ Pollut 232:467–476

    Article  CAS  Google Scholar 

  • Material District (2017). Isla plastic-free paper cup coating is completely recyclable. 26 October. https://materialdistrict.com/article/isla-paper-cup-coating-recyclable/. Accessed 26 Aug 2019

  • Mihaylova V, Yotova G, Kudłak B, Venelinov T, Tsakovski S (2022) Chemometric evaluation of WWTPs’ wastewaters and receiving surface waters in Bulgaria. Water 14(4):521

    Article  CAS  Google Scholar 

  • Mohan, A.M. 2017. Four technology advances reshaping the folding cartons market. Packaging World. 24 September 2017. https://www.packworld.com/article/package-type/cartons-and-boxes/folding-carton/four-technology-advances-reshaping-folding. Accessed 26 Aug 2019

  • Mohanty, Amar, and Rahul Bhardwaj (2009) Nanostructure controlled bioplastics in the design and engineering of sustainable multifunctional green materials. ICCM international conferences on composite materials

  • Müller R-J, Schrader H, Profe J, Dresler K, Deckwer W-D (2005) Enzymatic degradation of poly (ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405. https://doi.org/10.1002/marc.200500410

    Article  CAS  Google Scholar 

  • Nakajima T (2022) Divorcing from plastics for a sustainable future society. Overcoming environmental risks to achieve sustainable development goals. Springer, Singapore, pp 137–147

    Chapter  Google Scholar 

  • Nanda N, Bharadvaja N (2022) Algal bioplastics: current market trends and technical aspects. Clean Technol Environ Policy 24(9):2659–2679

    Article  Google Scholar 

  • Nathan VK, Ammini P, Vijayan J (2019) Photocatalytic degradation of synthetic dyes using iron (III) oxide nanoparticles (Fe2 O3-Nps) synthesised using Rhizophora mucronata Lam. IET Nanobiotechnol 13(2):120–123

    Article  Google Scholar 

  • Nnabuife SG, Ugbeh-Johnson J, Okeke NE, Ogbonnaya C (2022) Present and projected developments in hydrogen production: a technological review. Carbon Capture Sci Technol 3:100042

    Article  CAS  Google Scholar 

  • Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27(1):87–133

    Article  CAS  Google Scholar 

  • Pelcase. 2019. What is Flaxstic? https://pelacase.com/pages/what-is-flaxstic . Accessed 26 Aug 2019

  • Plastics Europe (2018). An analysis of European plastics production, demand and waste data. Plastics–the facts, 147

  • Plastics Today. 2015. Plastics use in vehicles to grow 75% by 2020, says industry watcher. https://www.plasticstoday.com/automotive-and-mobility/plastics-use-vehicles-grow-75-2020-says-industry-watcher/63791493722019. Accessed on 26 Aug 2019

  • Prescouter. 2019. What are the applications of nanocellulose in packaging? https://www.prescouter.com/2018/02/nanocellulose-applications-packaging/. Accessed on 30 Jul 2019

  • Rahman MM, Islam MR, Akash S, Harun-Or-Rashid M, RayRahamanIslamAnika TKMSMF, Hosain MK, Aovi FI, Hemeg HA, Rauf A, Wilairatana P (2022) Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: at a glance. Biomed Pharmacother 153:113305

    Article  CAS  Google Scholar 

  • Ren X, Dai P, Perveen A, Tang Q, Zhao L, Jia X, Li Y, Li C (2019) Effects of chronic glyphosate exposure to pregnant mice on hepatic lipid metabolism in offspring. Environ Pollut 254:112906. https://doi.org/10.1016/j.envpol.2019.07.074

    Article  CAS  Google Scholar 

  • Riudavets J, Salas I, Pons MJ (2007) Damage characteristics produced by insect pests in packaging film. J Stored Prod Res 43(4):564–570

    Article  Google Scholar 

  • Ryan PG (2016) Ingestion of plastics by marine organisms. Hazardous chemicals associated with plastics in the marine environment. Springer, Cham, pp 235–266

    Chapter  Google Scholar 

  • Sadler JC, Wallace S (2021) Microbial synthesis of vanillin from waste poly (ethylene terephthalate). Green Chem 23:4665–4672. https://doi.org/10.1039/d1gc00931a

    Article  CAS  Google Scholar 

  • Santos AL, Oliveira V, Baptista I, Henriques I, Gomes NCM, Almeida A, Correia A, Cunha  (2013) Wavelength dependence of biological damage induced by UV radiation on bacteria. Arch Microbiol 195(1):63–74

    Article  CAS  Google Scholar 

  • Sarcletti M, Park H, Wirth J, Englisch S, Eigen A, Drobek D, Vivod D, Friedrich B, Tietze R, Alexiou C, Zahn D, Zubiri BA, Spiecker E, Halik M (2021) The remediation of nano-/microplastics from water. Mater Today 48:38–46

    Article  CAS  Google Scholar 

  • Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  • Sharma C, Dhiman R, Rokona N, Panwar H (2017) Nanotechnology: an untapped resource for food packaging. Front Microbiol 8:1735. https://doi.org/10.3389/fmicb.2017.01735

    Article  Google Scholar 

  • Sheikh T, Hamid B, Baba Z, Iqbal S, Yatoo A, Fatima S, Nabi A, Kanth R, Dar K, Hussain N, Alturki A-I, Sunita K, Sayyed RZ (2022) Extracellular polymeric substances in psychrophilic cyanobacteria: a potential bioflocculant and carbon sink to mitigate cold stress. Biocatal Agric Biotechnol 42:102375

    Article  CAS  Google Scholar 

  • Sikiru S, Ayodele OA, Sanusi YK, Adebukola SY, Soleimani H, Yekeen N, Haslija AA (2022) A comprehensive review on nanotechnology application in wastewater treatment a case study of Metal-based using green synthesis. J Environ Chem Eng 10(4):108065

    Article  CAS  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Dalla RM (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  • Slor G, Papo N, Hananel U, Amir RJ (2018) Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates. Chem Commun 54(50):6875–6878

    Article  CAS  Google Scholar 

  • Sulaiman O, Salim N, Nordin NA, Hashim R, Ibrahim M, Sato M (2012) The potential of oil palm trunk biomass as an alternative source for compressed wood. BioResources 7(2):2688–2706

    Article  CAS  Google Scholar 

  • Syranidou E, Karkanorachaki K, Amorotti F, Franchini M, RepouskouKalivaVamvakakiKolvenbachFavaCorviniKalogerakis EMMBFPF-XN (2017) Biodegradation of weathered polystyrene films in seawater microcosms. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Tataranno ML, Perrone S, Longini M, Coviello C, Tassini M, Vivi A, Calderisi M, deVries LS, Groenendaal F, Buonocore G, Benders MJNL (2018) Predictive role of urinary metabolic profile for abnormal MRI score in preterm neonates. Dis Markers. https://doi.org/10.1155/2018/4938194

    Article  Google Scholar 

  • Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742

    Article  CAS  Google Scholar 

  • TYAGI PK (2016) Synthesis and characterization of single walled carbon nanotubes (Doctoral dissertation)

  • Venere, E. 2018. New research yields super-strong aluminium alloy. Purdue University. January. https://phys.org/news/2018-01-yields-super-strong-aluminum-alloy.html. Accessed on 26 Aug 2019

  • Wang W, Yuan W, Xu EG, Li L, Zhang H, Yang Y (2022) Uptake, translocation, and biological impacts of micro (nano) plastics in terrestrial plants: progress and prospects. Environ Res 203:111867

    Article  CAS  Google Scholar 

  • World Economic Forum (2016) The future of jobs: employment, skills and workforce strategy for the fourth industrial revolution. Global Challenge Insight Report

  • Xiaolian W, Jinlian L, Minghui D, Xiaoya X, Beiyuan J, Sarkar B, Bolan N, Weicheng X, Song X, Chen X, Fengchang W, Wang H (2021) Particulate plastics-plant interaction in soil and its implications: a review. Sci Total Environ 792:148337

    Article  Google Scholar 

  • Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240):1234–1237

    Article  CAS  Google Scholar 

  • Yee SW, Petigura EA, Fulton BJ, Knutson HA, Batygin K, Bakos GÁ, Hartman JD, Hirsch LA, Howard AW, Isaacson H, Kosiarek MR, Sinukoff E, Weiss LM (2018) HAT-P-11: discovery of a second planet and a clue to understanding exoplanet obliquities. Astron J 155(6):255

    Article  Google Scholar 

  • Yick JL, Travers T (2022) The ingestion of large plastics by recreationally caught southern bluefin tuna Thunnus maccoyii off southern Australia. Mar Pollut Bull 175:113332

    Article  CAS  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351:1196–1199. https://doi.org/10.1126/science.aad63

    Article  CAS  Google Scholar 

  • Yu J, Adingo S, Liu X, Li X, Sun J, Zhang X (2022) Micro plastics in soil ecosystem: a review of sources, fate, and ecological impact. Plant Soil Environ 68(1):1–17

    Article  CAS  Google Scholar 

  • Yuan Z, Nag R, Cummins E (2022) Human health concerns regarding microplastics in the aquatic environment: from marine to food systems. Sci Total Environ 823:153730

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are highly thankful to the Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan, for their moral support. Furthermore, authors are highly thankful to Ayesha Noreen, Becquer Frauberth Camayo-Lapa, Denis Dante Corilla Flores, and Almer Ventura Roman for their support in figures making and proof reading. Authors further extend thanks to Rafael Julian Malpartida Yapias, Zahraa Hashim Kareem, and Guillermo Gomer Cotrina Cabello for their support at revision stage.

Funding

The authors declare that no funds, grants, or other supports were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

AHG helped in conceptualization, figures making, tables preparation, proof reading, editing and main draft preparation, reference setting, journal formatting, conceptual idea, manuscript preparation. RAB, FOA, JTH, RLG contributed to English editing of manuscript, reference setting, journal formatting, proof reading, visualization, figures making, tables preparation, and proof reading.

Corresponding author

Correspondence to A. H. Gondal.

Ethics declarations

Conflict of interest

All the authors declared no conflict of interest.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Ethical standard

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Editorial responsibility: U.W. Tang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gondal, A.H., Bhat, R.A., Gómez, R.L. et al. Advances in plastic pollution prevention and their fragile effects on soil, water, and air continuums. Int. J. Environ. Sci. Technol. 20, 6897–6912 (2023). https://doi.org/10.1007/s13762-022-04607-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-022-04607-9

Keywords

Navigation