Skip to main content
Log in

The Olive Mill Pomace: A Sustainable Biofertilizer to Improve Soil Proprieties and Plant Nutrient Uptake

  • Review article
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Although of high economic and nutritional interest, olive oil production activities can have a negative impact on the environment given the large quantities of liquid and solid waste. Therefore, using sustainable development technologies is important to add value to the olive oil production process. This study explores innovative olive oil solid waste recycling solutions, taking into account sustainable waste management options. In particular, the most promising technologies for the production of high-added-value products from olive oil by-products was presented, with a special focus on sustainable non-thermal technologies for the use of olive pomace as a friendly soil bio-fertilizer. While discussing how this organic material application can affect the physicochemical soil properties and plant production, in addition to plant nutrient uptake and mineral bioavailability. The main results of this review discussed and all application factors described indicate that olive pomace is a bio-friendly fertilizer offering a great soil potential improvement. However, further research is needed to optimize the use of this olive solid waste and improve its applicability in soil.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Food and agriculture organization of the United Nations (FAO): FAOSTAT statistical database. Accessed 18 Oct 2021. https://www.fao.org/faostat/en/#data/QCL/visualize

  2. Council, I.O.: Prices & balances. Accessed 18 Oct 2021. https://www.internationaloliveoil.org/wp-content/uploads/2021/12/IOC-Olive-Oil-Dashboard-1.html#section

  3. Ministère de l’agriculture: Filière oléicole. Accessed 18 Oct 2021. https://www.agriculture.gov.ma/fr/filiere/olivier

  4. Souilem, S., El-Abbassi, A., Kiai, H., Hafidi, A., Sayadi, S., Galanakis, C.M.: Olive oil production sector: environmental effects and sustainability challenges. In: Olive Mill Waste: Recent Advances for Sustainable Management. pp. 1–28. Elsevier Inc. (2017)

  5. Cucci, G., Lacolla, G., Caranfa, L.: Improvement of soil properties by application of olive oil waste. Agron. Sustain. Dev. 28, 521–526 (2008). https://doi.org/10.1051/agro:2008027

    Article  Google Scholar 

  6. El-Bassi, L., Azzaz, A.A., Jellali, S., Akrout, H., Marks, E.A.N., Ghimbeu, C.M., Jeguirim, M.: Application of olive mill waste-based biochars in agriculture: Impact on soil properties, enzymatic activities and tomato growth. Sci. Total. Environ. (2021). https://doi.org/10.1016/j.scitotenv.2020.142531

    Article  Google Scholar 

  7. Massoudinejad, M.R., Arman, K., Aghayani, E.: Ecological risk assessment to olive oil mill wastewater (OMW) with bioassay on plant species. Ecol. Environ. Conserv. 20, 229–234 (2014)

    Google Scholar 

  8. Arjona, R., García, A., Ollero, P.: The drying of alpeorujo, a waste product of the olive oil mill industry. J. Food Eng. 41, 229–234 (1999). https://doi.org/10.1016/S0260-8774(99)00104-1

    Article  Google Scholar 

  9. De La Casa, J.A., Romero, I., Jiménez, J., Castro, E.: Fired clay masonry units production incorporating two-phase olive mill waste (alperujo). Ceram. Int. (2012). https://doi.org/10.1016/j.ceramint.2012.03.003

    Article  Google Scholar 

  10. Williams, O., Eastwick, C., Kingman, S., Giddings, D., Lormor, S., Lester, E.: Overcoming the caking phenomenon in olive mill wastes. Ind. Crops Prod. (2017). https://doi.org/10.1016/j.indcrop.2017.02.036

    Article  Google Scholar 

  11. Suzzi, G., Tofalo, R.: Trattamento dei reflui L’ulivo e l’olio, pp. 690–695. Bayer CropScience, Bologna (2009)

    Google Scholar 

  12. Mechri, B., Cheheb, H., Boussadia, O., Attia, F., Ben Mariem, F., Braham, M., Hammami, M.: Effects of agronomic application of olive mill wastewater in a field of olive trees on carbohydrate profiles, chlorophyll a fluorescence and mineral nutrient content. Environ. Exp. Bot. (2011). https://doi.org/10.1016/j.envexpbot.2010.12.004

    Article  Google Scholar 

  13. Barbera, A.C., Maucieri, C., Cavallaro, V., Ioppolo, A., Spagna, G.: Effects of spreading olive mill wastewater on soil properties and crops, a review. Agric. Water Manag. 119, 43–53 (2013). https://doi.org/10.1016/j.agwat.2012.12.009

    Article  Google Scholar 

  14. Dermeche, S., Nadour, M., Larroche, C., Moulti-Mati, F., Michaud, P.: Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem. (2013). https://doi.org/10.1016/j.procbio.2013.07.010

    Article  Google Scholar 

  15. Gimeno, E., Castellote, A.I., Lamuela-Raventós, R.M., La Torre, M.C.D., López-Sabater, M.C.: The effects of harvest and extraction methods on the antioxidant content (phenolics, α-tocopherol, and β-carotene) in virgin olive oil. Food Chem. (2002). https://doi.org/10.1016/S0308-8146(01)00399-5

    Article  Google Scholar 

  16. Mohammadi, E., Fattahi, M., Barin, M., Ashrafi-Saeidlou, S.: Arbuscular mycorrhiza and vermicompost alleviate drought stress and enhance yield, total flavonoid concentration, rutin content, and antioxidant activity of buckwheat (Fagopyrum esculentum Moench). S. Afr. J. Bot. 148, 588–600 (2022). https://doi.org/10.1016/J.SAJB.2022.05.020

    Article  Google Scholar 

  17. Kostas, E.T., Durán-Jiménez, G., Shepherd, B.J., Meredith, W., Stevens, L.A., Williams, O.S.A., Lye, G.J., Robinson, J.P.: Microwave pyrolysis of olive pomace for bio-oil and bio-char production. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123404

    Article  Google Scholar 

  18. Bouknana, D., Serghini Caid, H., Hammouti, B., Rmili, R., Hamdani, I.: Diagnostic study of the olive oil industry in the Eastern region of Morocco. Mater Today Proc. 45, 7782–7788 (2021). https://doi.org/10.1016/j.matpr.2021.03.563

    Article  Google Scholar 

  19. Morillo, J.A., Antizar-Ladislao, B., Monteoliva-Sánchez, M., Ramos-Cormenzana, A., Russell, N.J.: Bioremediation and biovalorisation of olive-mill wastes. Appl. Microbiol. Biotechnol. (2009). https://doi.org/10.1007/s00253-008-1801-y

    Article  Google Scholar 

  20. Chatzistathis, T., Koutsos, T.: Olive mill wastewater as a source of organic matter, water and nutrients for restoration of degraded soils and for crops managed with sustainable systems. Agric. Water Manag. (2017). https://doi.org/10.1016/j.agwat.2017.05.008

    Article  Google Scholar 

  21. Demichelis, F., Piovano, F., Fiore, S.: Biowaste management in Italy: challenges and perspectives. Sustainability (Switzerland). (2019). https://doi.org/10.3390/su11154213

    Article  Google Scholar 

  22. Ceccon, P.: Effetti agronomici e ambientali dell’applicazione di acque di vegetazione al frumento. In: Proceedings of the XXXIV Congress of the Italian society of agronomy. pp. 17–21, (2001)

  23. Tortosa, G., González-Gordo, S., Ruiz, C., Bedmar, E.J., Palma, J.M.: Alperujo compost improves the ascorbate (Vitamin C) content in pepper (Capsicum annuum L.) fruits and influences their oxidative metabolism. Agronomy (2018). https://doi.org/10.3390/AGRONOMY8060082

    Article  Google Scholar 

  24. Greco, G., Toscanoa, G., Cioffi, M., Gianfreda, L., Sannino, F.: Dephenolisation of olive mill waste-waters by olive husk. Water Res. (1999). https://doi.org/10.1016/S0043-1354(99)00008-1

    Article  Google Scholar 

  25. Regni, L., Gigliotti, G., Nasini, L., Agrafioti, E., Galanakis, C.M., Proietti, P.: Reuse of olive mill waste as soil amendment. Olive Mill Waste: recent advances for sustainable management. Olive mill Waste (2017). https://doi.org/10.1016/B978-0-12-805314-0.00002-9

    Article  Google Scholar 

  26. Chowdhury, A.K., Akratos, C.S., Vayenas, D.V., Pavlou, S.: Olive mill waste composting: a review. Int. Biodeterior. Biodegrad. (2013). https://doi.org/10.1016/j.ibiod.2013.06.019

    Article  Google Scholar 

  27. Chouchene, A., Jeguirim, M., Trouvé, G., Favre-Reguillon, A., Le Buzit, G.: Combined process for the treatment of olive oil mill wastewater: absorption on sawdust and combustion of the impregnated sawdust. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2010.04.017

    Article  Google Scholar 

  28. Haddad, K., Jeguirim, M., Jerbi, B., Chouchene, A., Dutournié, P., Thevenin, N., Ruidavets, L., Jellali, S., Limousy, L.: Olive mill wastewater: from a pollutant to green fuels, agricultural water source and biofertilizer. ACS Sustain. Chem. Eng. (2017). https://doi.org/10.1021/acssuschemeng.7b01786

    Article  Google Scholar 

  29. Jaén: Primer cultivo de andalucía datos básicos del olivar andaluz datos básicos del olivar andaluz. (2018)

  30. Bonari, E., Ceccarini, L.: Studio degli effetti della distribuzione dei reflui di frantoio (AV) in diversi terreni coltivati a soia. iris. sssup.it. (2001)

  31. Harwood, J., Aparicio, R.: Handbook of Olive Oil: Analysis and Properties. Springer, US (2013)

    Google Scholar 

  32. Malapert, A., Reboul, E., Loonis, M., Dangles, O., Tomao, V.: Direct and rapid profiling of biophenols in olive pomace by UHPLC-DAD-MS. Food Anal. Methods (2018). https://doi.org/10.1007/s12161-017-1064-2

    Article  Google Scholar 

  33. Mekersi, N., Kadi, K., Casini, S., Addad, D., Bazri, K.E., Marref, S.E., Lekmine, S., Amari, A.: Effects of single and combined olive mill wastewater and olive mill pomace on the growth, reproduction, and survival of two earthworm species. Appl. Soil Ecol. (2021). https://doi.org/10.1016/j.apsoil.2021.104123

    Article  Google Scholar 

  34. Alburquerque, J.A., Gonzálvez, J., García, D., Cegarra, J.: Agrochemical characterisation of ‘alperujo’, a solid by-product of the two-phase centrifugation method for olive oil extraction. Bioresour. Technol. 91, 195–200 (2004). https://doi.org/10.1016/S0960-8524(03)00177-9

    Article  Google Scholar 

  35. Abu-Rumman, G.: Effect of olive mill solid waste on soil physical properties. Int. J. Soil Sci. (2016). https://doi.org/10.3923/ijss.2016.94.101

    Article  Google Scholar 

  36. de la Fuente, C., Clemente, R., Bernal, M.P.: Changes in metal speciation and pH in olive processing waste and sulphur-treated contaminated soil. Ecotoxicol. Environ. Saf. (2008). https://doi.org/10.1016/j.ecoenv.2007.05.021

    Article  Google Scholar 

  37. Ghorbanzadeh, N., Mahsefat, M., Farhangi, M.B., Khalili Rad, M., Proietti, P.: Full research paper short-term impacts of pomace application and Pseudomonas bacteria on soil available phosphorus. Biocatal. Agric. Biotechnol. (2020). https://doi.org/10.1016/j.bcab.2020.101742

    Article  Google Scholar 

  38. Nasini, L., Gigliotti, G., Balduccini, M.A., Federici, E., Cenci, G., Proietti, P.: Effect of solid olive-mill waste amendment on soil fertility and olive (Olea europaea L.) tree activity. Agric. Ecosyst. Environ. (2013). https://doi.org/10.1016/j.agee.2012.10.006

    Article  Google Scholar 

  39. Muscolo, A., Papalia, T., Settineri, G., Romeo, F., Mallamaci, C.: Three different methods for turning olive pomace in resource: benefits of the end products for agricultural purpose. Sci. Total. Environ. (2019). https://doi.org/10.1016/j.scitotenv.2019.01.210

    Article  Google Scholar 

  40. Khdair, A.I., Abu-Rumman, G., Khdair, S.I.: Pollution estimation from olive mills wastewater in Jordan. Heliyon (2019). https://doi.org/10.1016/j.heliyon.2019.e02386

    Article  Google Scholar 

  41. Ilay, R., Kavdir, Y., Sümer, A.: The effect of olive oil solid waste application on soil properties andgrowth of sunflower (Helianthus annuus L.) and bean (Phaseolusvulgaris L.). Int. Biodeterior. Biodegrad. 85, 254–259 (2013)

    Article  Google Scholar 

  42. Mekersi, N., Kadi, K., Casini, S., Addad, D., Amari, A., Lekmine, S.: Evaluation of the effects of short-term amendment with olive mill pomace on some soil properties. Soil Sci. Annu. (2022). https://doi.org/10.37501/SOILSA/150493

    Article  Google Scholar 

  43. de la Fuente, C., Clemente, R., Martínez-Alcalá, I., Tortosa, G., Bernal, M.P.: Impact of fresh and composted solid olive husk and their water-soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. J. Hazard. Mater. (2011). https://doi.org/10.1016/j.jhazmat.2010.12.004

    Article  Google Scholar 

  44. Aviani, I., Laor, Y., Medina, S., Krassnovsky, A., Raviv, M.: Co-composting of solid and liquid olive mill wastes: management aspects and the horticultural value of the resulting composts. Bioresour. Technol. (2010). https://doi.org/10.1016/j.biortech.2010.03.096

    Article  Google Scholar 

  45. Medjahdi, N., Djabeur, A., Kaid-Harche, M.: Effect of three types of composts of olive oil by-products on growth and yield of hard wheat Triticum durum Desf. Afr. J. Biotechnol. (2014). https://doi.org/10.5897/ajb2014.14163

    Article  Google Scholar 

  46. Bouknana, D., Hammouti, B., Messali, M., Aouniti, A., Sbaa, M.: Olive pomace extract (OPE) as corrosion inhibitor for steel in HCl medium. Asian Pac. J. Trop. Dis. (2014). https://doi.org/10.1016/S2222-1808(14)60767-2

    Article  Google Scholar 

  47. Niaounakis, M., Halvadakis, C.P.: Olive processing waste management literature review and patent survey. Waste Manag. Res. 24(4), 402–403 (2006). https://doi.org/10.1016/S1478-7482(13)60004-4

    Article  Google Scholar 

  48. Ameziane, H., Nounah, A., Khamar, M., Zouahri, A.: Use of olive pomace as an amendment to improve physico-chemical parameters of soil fertility. Agron. Res. 17, 2158–2171 (2019). https://doi.org/10.15159/AR.19.212

    Article  Google Scholar 

  49. Bezuglova, O.S., Gorovtsov, A.V., Polienko, E.A., Zinchenko, V.E., Grinko, A.V., Lykhman, V.A., Dubinina, M.N., Demidov, A.: Effect of humic preparation on winter wheat productivity and rhizosphere microbial community under herbicide-induced stress. J. Soils Sedim. (2019). https://doi.org/10.1007/s11368-018-02240-z

    Article  Google Scholar 

  50. Zhang, N., Yu, X., Pradhan, A., Puppala, A.J.: A new generalized soil thermal conductivity model for sand–kaolin clay mixtures using thermo-time domain reflectometry probe test. Acta Geotech. (2017). https://doi.org/10.1007/s11440-016-0506-0

    Article  Google Scholar 

  51. Zeynep, A.L.M.A., Soylemez, S.: The effect of olive pomace and seaweed extract on the growth of pepper seedling. GSC Biol. Pharm. Sci. (2022). https://doi.org/10.30574/gscbps.2022.19.2.0164

    Article  Google Scholar 

  52. Ajayi, A.E., Horn, R.: Biochar-induced changes in soil resilience: effects of soil texture and biochar dosage. Pedosphere (2017). https://doi.org/10.1016/S1002-0160(17)60313-8

    Article  Google Scholar 

  53. Kwiatkowska-Malina, J.: Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sedim. (2018). https://doi.org/10.1007/s11368-017-1891-1

    Article  Google Scholar 

  54. Sulman, B.N., Moore, J.A.M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., Sridhar, B., Hartman, M.D., Wang, G., Wieder, W.R., Bradford, M.A., Luo, Y., Mayes, M.A., Morrison, E., Riley, W.J., Salazar, A., Schimel, J.P., Tang, J., Classen, A.T.: Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry (2018). https://doi.org/10.1007/s10533-018-0509-z

    Article  Google Scholar 

  55. Fedoseeva, E., Stepanov, A., Yakimenko, O., Patsaeva, S., Freidkin, M., Khundzhua, D., Terekhova, V.: Biodegradation of humic substances by microscopic filamentous fungi: chromatographic and spectroscopic proxies. J. Soils Sedim. (2019). https://doi.org/10.1007/s11368-018-2209-7

    Article  Google Scholar 

  56. Kallenbach, C.M., Wallenstein, M.D., Schipanksi, M.E., Stuart Grandy, A.: Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019)

    Article  Google Scholar 

  57. Aranda, V., Macci, C., Peruzzi, E., Masciandaro, G.: Biochemical activity and chemical-structural properties of soil organic matter after 17 years of amendments with olive-mill pomace co-compost. J. Environ. Manag. (2015). https://doi.org/10.1016/j.jenvman.2014.08.024

    Article  Google Scholar 

  58. Regni, L., Nasini, L., Ilarioni, L., Brunori, A., Massaccesi, L., Agnelli, A., Proietti, P.: Long term amendment with fresh and composted solid olive mill waste on olive grove affects carbon sequestration by prunings, fruits, and soil. Front. Plant Sci. (2017). https://doi.org/10.3389/fpls.2016.02042

    Article  Google Scholar 

  59. Vlyssides, A.G., Loizides, M., Karlis, P.K.: Integrated strategic approach for reusing olive oil extraction by-products. J. Clean. Prod. 12(6), 603–611 (2004)

    Article  Google Scholar 

  60. Lacolla, G., Fortunato, S., Nigro, D., De Pinto, M.C., Mastro, M.A., Caranfa, D., Gadaleta, A., Cucci, G.: Effects of mineral and organic fertilization with the use of wet olive pomace on durum wheat performance. Int. J. Recycl. Org. Waste Agric. (2019). https://doi.org/10.1007/s40093-019-00295-7

    Article  Google Scholar 

  61. Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M.H., Brtnicky, M., Hammerschmiedt, T., Datta, R.: Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture (2020). https://doi.org/10.3390/agriculture10080334

    Article  Google Scholar 

  62. Muhmood, A., Lu, J., Dong, R., Wu, S.: Formation of struvite from agricultural wastewaters and its reuse on farmlands: status and hindrances to closing the nutrient loop. J. Environ. Manag. 230, 1–13 (2019)

    Article  Google Scholar 

  63. Nesme, T., Metson, G.S., Bennett, E.M.: Global phosphorus flows through agricultural trade. Global Environ. Change. (2018). https://doi.org/10.1016/j.gloenvcha.2018.04.004

    Article  Google Scholar 

  64. Wilson, H., Elliott, J., Macrae, M., Glenn, A.: Near-surface soils as a source of phosphorus in snowmelt runoff from cropland. J. Environ. Qual. (2019). https://doi.org/10.2134/jeq2019.04.0155

    Article  Google Scholar 

  65. Tränkner, M., Tavakol, E., Jákli, B.: Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant. (2018). https://doi.org/10.1111/ppl.12747

    Article  Google Scholar 

  66. Molina Alcaide, E., Yáñez Ruiz, D.R., Moumen, A., Martín García, A.I.: Ruminal degradability and in vitro intestinal digestibility of sunflower meal and in vitro digestibility of olive by-products supplemented with urea or sunflower meal Comparison between goats and sheep. Anim. Feed Sci. Technol. (2003). https://doi.org/10.1016/j.anifeedsci.2003.08.002

    Article  Google Scholar 

  67. Cayuela, M.L., Bernal, M.P., Roig, A.: Composting olive mill waste and sheep manure for orchard use. Compost Sci. Util. (2004). https://doi.org/10.1080/1065657X.2004.10702171

    Article  Google Scholar 

  68. Proietti, P., Federici, E., Fidati, L., Scargetta, S., Massaccesi, L., Nasini, L., Regni, L., Ricci, A., Cenci, G., Gigliotti, G.: Effects of amendment with oil mill waste and its derived-compost on soil chemical and microbiological characteristics and olive (Olea europaea L.) productivity. Agric. Ecosyst. Environ. (2015). https://doi.org/10.1016/j.agee.2015.03.028

    Article  Google Scholar 

  69. Bronick, C.J., Lal, R.: Soil structure and management: a review. Geoderma 124, 3–22 (2005). https://doi.org/10.1016/J.GEODERMA.2004.03.005

    Article  Google Scholar 

  70. Shi, P., Arter, C., Liu, X., Keller, M., Schulin, R.: Soil aggregate stability and size-selective sediment transport with surface runoff as affected by organic residue amendment. Sci. Total. Environ. (2017). https://doi.org/10.1016/j.scitotenv.2017.07.008

    Article  Google Scholar 

  71. Šimanský, V., Balashov, E., Horák, J.: Water stability of soil aggregates and their ability to sequester carbon in soils of vineyards in Slovakia. Arch. Agron. Soil Sci. (2016). https://doi.org/10.1080/03650340.2015.1048683

    Article  Google Scholar 

  72. Kavdir, Y., Killi, D.: Influence of olive oil solid waste applications on soil pH, electrical conductivity, soil nitrogen transformations, carbon content and aggregate stability. Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.05.034

    Article  Google Scholar 

  73. Nektarios, P.A., Ntoulas, N., Mcelroy, S., Volterrani, M., Arbis, G.: Effect of olive mill compost on native soil characteristics and tall fescue turfgrass development. Agron. J. (2011). https://doi.org/10.2134/agronj2011.0145

    Article  Google Scholar 

  74. Tejada, M., Ruiz, J.L., Dobao, M., Benítez, C., González, J.L.: Evolución de parámetros fısicos de un suelo tras la adición de distintos tipos de orujos de aceituna. Actas de Horticultura. 18, 514–518 (1997)

    Google Scholar 

  75. Asadzadeh, F., Maleki-Kakelar, M., Shabani, F.: Predicting cationic exchange capacity in calcareous soils of East-Azerbaijan Province, Northwest Iran. Commun. Soil Sci. Plant Anal. 50, 1106–1116 (2019). https://doi.org/10.1080/00103624.2019.1604728

    Article  Google Scholar 

  76. Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead-Peterson, J.: Assessment and monitoring of soil degradation during land use change using multivariate analysis. Land Degrad. Dev. (2017). https://doi.org/10.1002/ldr.2541

    Article  Google Scholar 

  77. Alaoui, I., El Ghadraoui, O., Serbouti, S., Ahmed, H., Mansouri, I., ElKamari, F., Taroq, A., Ousaaid, D., Squalli, W., Farah, A.: The mechanisms of absorption and nutrients transport in plants: a review. Trop. J. Nat. Prod. Res. 6(1), 8–14 (2022)

    Article  Google Scholar 

  78. Mardukhi, B., Rejali, F., Daei, G., Ardakani, M.R., Malakouti, M.J., Miransari, M.: Mineral uptake of mycorrhizal wheat (Triticum aestivum L.) under salinity stress. Commun. Soil Sci. Plant Anal. (2015). https://doi.org/10.1080/00103624.2014.981271

    Article  Google Scholar 

  79. Physiology of crop production—N.K. Fageria, V.C. Baligar, Ralph Clark—Google books. https://books.google.co.ma/books?hl=en&lr=&id=kX0ImcblXbAC&oi=fnd&pg=PP15&dq=Plant+production+physiology&ots=mT-ddXf9VE&sig=1L5D_wtaxiPz7NKnH8plVV9w5iU&redir_esc=y#v=onepage&q=Plant%20production%20physiology&f=false

  80. Killi, D., Kavdir, Y.: Effects of olive solid waste and olive solid waste compost application on soil properties and growth of Solanum lycopersicum. Int. Biodeterior. Biodegrad. (2013). https://doi.org/10.1016/j.ibiod.2013.03.004

    Article  Google Scholar 

  81. Zhao, L.Y.L., Schulin, R., Weng, L., Nowack, B.: Coupled mobilization of dissolved organic matter and metals (Cu and Zn) in soil columns. Geochim. Cosmochim. Acta (2007). https://doi.org/10.1016/j.gca.2007.04.020

    Article  Google Scholar 

  82. Jones, J.B., Jr., Wolf, B., Mills, H.A.: Plant analysis handbook: A practical sampling, preparation, analysis, and interpretation guide. (1991)

  83. Huang, P.M.: Role of soil minerals in transformations of natural organics and xenobiotics in soil. Soil Biochem. (2017). https://doi.org/10.1201/9780203739389-2

    Article  Google Scholar 

  84. McBride, M.B.: Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Sci. Soc. Am. J. (1987). https://doi.org/10.2136/sssaj1987.03615995005100060012x

    Article  Google Scholar 

  85. Brouwers, G.J., Vijgenboom, E., Corstjens, P.L., De Vrind, J.P., De Vrind-De Jong, E.W.: Bacterial Mn2 oxidizing systems and multicopper oxidases: an overview of mechanisms and functions. Geomicrobiol J. (2000). https://doi.org/10.1080/014904500270459

    Article  Google Scholar 

  86. Meetei, T.T., Devi, Y.B., Chanu, T.T.: Ion exchange: the most important chemical reaction on earth after photosynthesis. Int. Res. J. Pure Appl. Chem. (2020). https://doi.org/10.9734/IRJPAC/2020/V21I630174

    Article  Google Scholar 

  87. Weng, L., Temminghoff, E.J.M., Lofts, S., Tipping, E., Van Riemsdijk, W.H.: Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ. Sci. Technol. (2002). https://doi.org/10.1021/es0200084

    Article  Google Scholar 

  88. Chaudhuri, P.S., Paul, T.K., Dey, A., Datta, M., Dey, S.K.: Effects of rubber leaf litter vermicompost on earthworm population and yield of pineapple (Ananas comosus) in West Tripura, India. Int. J. Recycl. Org. Waste Agric. (2016). https://doi.org/10.1007/s40093-016-0120-z

    Article  Google Scholar 

  89. Liu, M., Sun, J., Li, Y., Xiao, Y.: Nitrogen fertilizer enhances growth and nutrient uptake of Medicago sativa inoculated with Glomus tortuosum grown in Cd-contaminated acidic soil. Chemosphere 167, 204–211 (2017). https://doi.org/10.1016/J.CHEMOSPHERE.2016.09.145

    Article  Google Scholar 

  90. El Darier, S.M., Ahmed, H.A., Abd El Razik, M.S., Allam, M.E.S.: Detoxification of olive-mill solid waste and its probable application as organic fertilizer. J. Fertil. Pestic. (2015). https://doi.org/10.4172/2471-2728.1000154

    Article  Google Scholar 

  91. Roberto, G.R., Ochoa, M.V., Hinojosa, M.B., Beatriz, G.M.: Improved soil quality after 16 years of olive mill pomace application in olive oil groves. Agron. Sustain. Dev. (2012). https://doi.org/10.1007/s13593-011-0080-7

    Article  Google Scholar 

  92. Gmez-Muoz, B., Hatch, D.J., Bol, R., Garca-Ruiz, R.: The compost of olive mill pomace: from a waste to a resource—environmental benefits of its application in olive oil groves. In: Sustainable development—authoritative and leading edge content for environmental management (2012). https://doi.org/10.5772/48244

  93. Mekki, A., Dhouib, A., Sayadi, S.: Review: effects of olive mill wastewater application on soil properties and plants growth. Int. J. Recycl. Org. Waste Agric. 2, 1–7 (2013). https://doi.org/10.1186/2251-7715-2-15/TABLES/2

    Article  Google Scholar 

  94. López-Piñeiro, A., Murillo, S., Barreto, C., Muñoz, A., Rato, J.M., Albarrán, A., García, A.: Changes in organic matter and residual effect of amendment with two-phase olive-mill waste on degraded agricultural soils. Sci. Total. Environ. (2007). https://doi.org/10.1016/j.scitotenv.2007.01.018

    Article  Google Scholar 

  95. Sampedro, I., Romero, C., Ocampo, J.A., Brenes, M., García, I.: Removal of monomeric phenols in dry mill olive residue by saprobic fungi. J. Agric. Food Chem. (2004). https://doi.org/10.1021/jf0400563

    Article  Google Scholar 

  96. Ouzounidou, G., Zervakis, G.I., Gaitis, F.: Terrestrial and aquatic environmental toxicology raw and microbiologically detoxified olive mill waste and their impact on plant growth. Terr. Aquat. Environ. Toxicol. 4(1), 21–38 (2010)

    Google Scholar 

  97. Hamed, S., Abi-Ayad, L., Ghezlaoui-Bendi-Djelloul, B.-E., Souddi, M.: Effects of Pomace Fertilization on some Phenological, Morphological and Biochemical characters of the Cherry tree in the Region of Tlemcen (Algeria): Case of the Black Bigareau and Sunburst. Adv. Res. Life Sci. (2021). https://doi.org/10.2478/arls-2021-0025

    Article  Google Scholar 

  98. Chartzoulakis, K., Psarras, G., Moutsopoulou, M., Stefanoudaki, E.: Application of olive mill wastewater to a Cretan olive orchard: effects on soil properties, plant performance and the environment. Agric. Ecosyst. Environ. (2010). https://doi.org/10.1016/j.agee.2010.05.014

    Article  Google Scholar 

Download references

Acknowledgements

The main authors wish to thank all who assisted in conducting this work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

IA, and OEG provided the main idea and prepared the manuscript (Writing-preparation of the original draft-revision and editing); KT, revised the idea of the manuscript, the linguistic, providing suggestions for changes and criticism of the sections and structure of the manuscript, draft-revision and editing; AH, and AF supervision, revision, editing.

Corresponding author

Correspondence to Karim Tanji.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence this paper.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alaoui, I., El Ghadraoui, O., Tanji, K. et al. The Olive Mill Pomace: A Sustainable Biofertilizer to Improve Soil Proprieties and Plant Nutrient Uptake. Waste Biomass Valor 15, 2575–2590 (2024). https://doi.org/10.1007/s12649-023-02324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02324-z

Keywords

Navigation