Skip to main content
Log in

Sugar Production from Cardboard Waste by Two-Step Acid Hydrolysis Using Ionic Liquid

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

A significant amount of paper residue has continuously been discarded worldwide. This rsidue encompasses a high-cellulose content that can be converted into value-added chemicals. Hydrolysis can be applied as an effective method to produce chemicals from lignocellulosic materials. This work presents a study on biomass waste valorization that uses acid hydrolysis to convert the cellulose residue into raw materials. Commercial cardboard waste was used as a lignocellulosic material source to produce fermentable sugar. The original material was crushed to about 1 mm pieces before being submitted to the hydrolysis reaction. It was found 4.8 mg of calcium ion (Ca2+) per gram of cardboard by means of a complexometric method using direct titration. The calcium ion acted as an inhibitor for the action of yeasts during the fermentation process, and then Ca2+ ions were removed by calcium sulfate decantation. A low-cost ionic liquid (n-butylammonium acetate) was used to enhance the hydrolysis reactional media. The fermentable sugar was obtained by two-step cellulose hydrolysis. Sugar content was assessed by both the Fehling test and the 3,5-dinitro-salicylic acid (DNS) method. Without ionic liquid, the maximum sugar concentration was 6.09 and 0.85 g/L, respectively, to 10% and 35% sulfuric acid concentrations. In the presence of ionic liquid, the corresponding sugar concentrations were 6.56 and 5.68 g/L. The whole reaction conversion achieved 30%, which must be considered significant for cellulose encompassed in the cardboard waste. The high amount of sugar obtained by acid hydrolysis of cardboard waste using ionic liquid points to a proper recovery and discarding for cardboard waste. Results show paper residues as an alternative source to sugar production, which is feasible to be converted into bioenergy and biofuel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data and materials were obtained during the study by the authors. No data, text, or theories by others are presented. The datasets generated during the current study are not publicly available due to copyright restrictions, but they are available from the corresponding author on a representative request.

References

  1. Wong, S.L., Ngadi, N., Abdullah, T.A.T., Inuwa, I.M.: Current state and future prospects of plastic waste as source of fuel: a review. Renew. Sustain. Energy Rev. 50, 1167–1180 (2015)

    Article  Google Scholar 

  2. Santos, R.G., Rocha, C., Felipe, F., Cezario, F., Correia, P., Rezaei-Gomari, S.: Tire waste management: an overview from chemical compounding to the pyrolysis-derived fuels. J. Mater. Cycles Waste Manage. 22, 628–641 (2020)

    Article  Google Scholar 

  3. Ullah, K., Sharma, V.K., Dhingra, S., Braccio, G., Ahmad, M., Sofia, S.: Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew. Sustain. Energy Rev. 2015(51), 682–698 (2015)

    Article  Google Scholar 

  4. Poliakoff, M., Licence, P.: Green chemistry. Nature 450, 810–812 (2007)

    Article  Google Scholar 

  5. Manian, A.P., Braun, D.E., Široká, B., Bechtold, T.: Distinguishing liquid ammonia from sodium hydroxide mercerization in cotton textiles. Cellulose 29, 4183–4202 (2022)

    Article  Google Scholar 

  6. Taha, M., Foda, M., Shahsavari, E., Aburto-Medina, A., Adetutu, E., Ball, A.: Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr. Opin. Biotechnol. 38, 190–197 (2016)

    Article  Google Scholar 

  7. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores. Technol. 83, 1–11 (2012)

    Article  Google Scholar 

  8. Szczodrak, J., Fiedurek, J.: Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenerg. 10(5–6), 367–375 (1996)

    Article  Google Scholar 

  9. Santos, R.G., Alencar, A.C.: Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review. Int. J. Hydrogen Energy 45(36), 18114–18132 (2020)

    Article  Google Scholar 

  10. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., Zacchi, G.: Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 12 (2006)

    Article  Google Scholar 

  11. Balat, M., Balat, H., Öz, C.: Progress in Bioethanol Processing. Prog. Energy Combust. Sci. 34, 551–573 (2008)

    Article  Google Scholar 

  12. FAOSTAT (2019). FAO - Food and Agriculture Organization of the United Nations. Available in: http://www.fao.org/faostat/en/#data/GF.

  13. IEA (2020). Key World Energy Statistics. Available in: https://www.iea.org/reports/key-world-energy-statistics-2020.

  14. Cabalova, I., Kacik, F., Geffert, A., Kacikova, D.: The effects of paper recycling and its environmental impact. In: Broniewicz, E. (ed.) Environmental management in practice, pp. 329–350. InTech (2011)

    Google Scholar 

  15. Ndiribe, C.C.: The nature fit concept of waste reduction: Prospects for engineering a clean future. Res. Environ. Sustain. 14, 100127 (2023)

    Google Scholar 

  16. CEPI (2006). Confederation of European Paper Industries. Special Recycling 2005 Statistics- European Paper Industry Hits New Record in Recycling. Available in: http://www.erpa.info/images/Special_Recycling_2005_statistic.

  17. DEEP (2020). Corrugated Cardboard Recycling. Department of Energy & Environmental Protection. Available in: https://portal.ct.gov/DEEP/Reduce-Reuse-Recycle/Corrugated-Cardboard.

  18. Dubey, A.K., Gupta, P.K., Garg, N., Naithani, S.: Bioethanol production from waste paper acid pretreated hydrolyzate with xylose fermenting Pichia stipites. Carbohyd. Polym. 88(3), 825–829 (2012)

    Article  Google Scholar 

  19. Pauly, M., Keegstra, K.: Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 54, 559–568 (2008)

    Article  Google Scholar 

  20. De Oliveira, D.M., De Bomfim, A.S.C., Benini, K.C.C.D.C., Cioffi, M.O.H., Voorwald, H.J.C., Rodrigue, D.: Waste paper as a valuable resource: an overview of recent trends in the polymeric composites field. Polymers 15, 426 (2023)

    Article  Google Scholar 

  21. Yilmaz U, Tutuş A, Sönmez S (2021). An overview of the waste paper recycling system. Current Studies in Agriculture, Forestry and Aquaculture Sciences. Editor: İsmet Daşdemir. Duvar Publishing, Turkey.

  22. Simão, L., Hotza, D., Raupp-Pereira, F., Labrincha, J.A., Montedo, O.R.K.: Wastes from pulp and paper mills: a review of generation and recycling alternatives. Cerâmica 64(371), 443–453 (2018)

    Article  Google Scholar 

  23. Zabed, H., Sahu, J.N., Boyce, A.N., Faruq, G.: Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew. Sustain. Energy Rev. 66, 751–774 (2016)

    Article  Google Scholar 

  24. Hamelinck, C.N., Hooijdonk, G., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short- middle- and long-term. Biomass Bioener. 28, 384–410 (2005)

    Article  Google Scholar 

  25. Ogeda, T.L., Petri, D.F.S.: Biomass enzymatic hydrolysis. Quim. Nova 33(7), 1549–1558 (2010)

    Article  Google Scholar 

  26. Laca, A., Laca, A., Díaz, M.: Hydrolysis: from cellulose and hemicellulose to simple sugar. Second and third generation of feedstocks. Chapter 8, 213–240 (2019)

    Google Scholar 

  27. Sindhu, R., Kuttiraja, M., Binod, P., Sukumaran, R.K., Pandey, A.: Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Indust. Crops Prod. 52, 169–176 (2014)

    Article  Google Scholar 

  28. Taneda, D., Ueno, Y., Ikeo, M., Okino, S.: Characteristics of enzyme hydrolysis of cellulose under static condition. Biores. Technol. 121, 154–160 (2012)

    Article  Google Scholar 

  29. Wang, L., Templer, R., Murphy, R.J.: High-solids loading enzymatic hydrolysis of waste papers for biofuel production. Appl. Energy 99, 23–31 (2012)

    Article  Google Scholar 

  30. Morales-Dela Rosa, S., Campos-Martin, J.M., Fierro, J.L.G.: Complete chemical hydrolysis of cellulose into fermentable sugars via ionic liquids and antisolvent pretreatments. Chem Sus Chem 7(12), 3467–3475 (2014)

    Article  Google Scholar 

  31. Hubbe, M.A.: Recycling paper recycling. A new classic handbook on recycling. BioResources 9(2), 1828–1829 (2014)

    Article  Google Scholar 

  32. Zugenmaier, P. (ed.): Crystalline cellulose and cellulose derivatives: characterization and structure. In: Cellulose derivatives, pp. 175–206. Springer, Berlin, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Damayanti, D., Supriyadi, D., Amelia, D., Saputri, D.R., Devi, Y.L.L., Auriyani, W.A., Wu, H.S.: Conversion of lignocellulose for bioethanol production. Applied in bio-polyethylene terephthalate. Polymers 13, 2886 (2021)

    Article  Google Scholar 

  34. Bergmeyer, H.U., Grabl, M.: Methods of enzymatic analysis, 3rd edn. Verlag Chemie, Weinheim (1983)

    Google Scholar 

  35. Nill, J., Karuna, N., Jeoh, T.: The impact of kinetic parameters on cellulose hydrolysis rates. Process Biochem. 74, 108–117 (2018)

    Article  Google Scholar 

  36. Clark, T.A., Mackei, K.L.: Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiate. J. Chem. Technol. Biotechnol. 34, 101–110 (1984)

    Article  Google Scholar 

  37. Fengel, G., Wegener, G.: Wood and cellulose chemistry. Walter de Gruyter, Berlin (1984)

    Google Scholar 

  38. Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R.: Hemicelluloses for fuel ethanol: a review. Biores. Technol. 101(13), 4775–4800 (2010)

    Article  Google Scholar 

  39. Rossell, C.E.V.: Conversion of lignocellulose biomass (bagasse and straw) from the sugar-alcohol industry into bioethanol Industrial Perspectives for Bioethanol. Ed Telma. Franco. Cap. 8, 123–142 (2006)

    Google Scholar 

  40. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pre-treatment of lignocellulosic biomass. Biores. Technol. 96, 673–686 (2005)

    Article  Google Scholar 

  41. Esteghlalian, A., Hashimoto, A.G., Fenske, J.J., Penner, M.H.: Modeling and optimization of the dilute-sulfuric-acid pre-treatment of corn stover poplar and switchgrass. Bioresour. Technol. 59, 129–136 (1997)

    Article  Google Scholar 

  42. Liu, C.-Z., Wang, C., Stiles, A.R., Guo, C.: Ionic liquids for biofuel production: opportunities and challenges. Appl. Energy 92, 406–414 (2012)

    Article  Google Scholar 

  43. Xu, J., Liu, B., Hou, H., Hu, J.: Pre-treatment of eucalyptus with recycled ionic liquids for low-cost biorefinery. Biores. Technol. 234, 406–414 (2017)

    Article  Google Scholar 

  44. Holbrey, J.D., Seddon, K.R.: Ionic liquids. Clean Prod. Processes 1, 223–236 (1999)

    Google Scholar 

  45. Bian, J., Peng, F., Peng, X.-P., Xiao, X., Peng, P., Xu, F., Sun, R.-C.: Effect of [Emim]Ac pretreatment on the structure and enzymatic hydrolysis of sugarcane bagasse cellulose. Carbohyd. Polym. 100, 211–217 (2014)

    Article  Google Scholar 

  46. Gunny, A.A.N., Arbain, D., Nashef, E.M., Jamal, P.: Applicability evaluation of deep eutectic solvents-cellulase system for lignocellulose hydrolysis. Biores. Technol. 181, 297–302 (2015)

    Article  Google Scholar 

  47. Zhuo, K., Du, Q., Bai, G., Wang, C., Chen, Y., Wang, J.: Hydrolysis of cellulose catalyzed by novel acidic ionic liquids. Carbohyd. Polym. 115, 49–53 (2015)

    Article  Google Scholar 

  48. Amarasekara, A.S.: Acidic Ionic Liquids. Chem. Rev. 116, 6133–6183 (2016)

    Article  Google Scholar 

  49. Jordan, J.H., Easson, M.W., Condon, B.D.: Cellulose hydrolysis using ionic liquids and inorganic acids under dilute conditions: morphological comparison of nanocellulose. RSC Adv. 10, 39413–39424 (2020)

    Article  Google Scholar 

  50. Maki-Arvela, P., Anugwom, I., Virtanen, P., Sjoholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids: a review. Ind. Crops Prod. 32, 175–201 (2010)

    Article  Google Scholar 

  51. Lee, K.M., Ngoh, G.C., Chua, A.S.M., Yoon, L.W., Ang, T.N., Lee, M.G.: Comparison study of different ionic liquid pretreatment in maximizing total reducing sugars recovery. BioResources 9, 1552–1564 (2014)

    Article  Google Scholar 

  52. Parveen, F., Patra, T., Upadhyayula, S.: Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids—a comparative study. Carbohyd. Polym. 135, 280–284 (2016)

    Article  Google Scholar 

  53. Kulshrestha, A., Pancha, I., Mishra, S., Kumar, A.: Deep eutectic solvents and ionic liquid assisted hydrolysis of microalgal biomass: a promising approach towards sustainable biofuel production. J. Mol. Liq. 335, 116264 (2021)

    Article  Google Scholar 

  54. Lara-Serrano, M., Angulo, F.S., Negro, M.J., Morales-Delarosa, S., Campos-Martin, J.M., Fierro, J.G.: Second-Generation bioethanol production combining simultaneous fermentation and saccharification of IL-pretreated barley straw. ACS Sustain. Chem. Eng. 6(5), 7086–7095 (2018)

    Article  Google Scholar 

  55. Lopes, A.M.C., Bogel-Łukasik, R.: Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts. Chemsuschem 8(6), 947–965 (2015)

    Article  Google Scholar 

  56. Lei, Z., Dai, C., Chen, B.: Introduction: Ionic Liquids. Chem. Rev. 117(10), 6633–6635 (2017)

    Article  Google Scholar 

  57. Andrade Neto, J.C., Cabral, A.S., Oliveira, L.R.D., Torres, R.B., Morandim-Giannetti, A.A.: Synthesis and characterization of new low-cost ILs based on butylammonium cation and application to lignocellulose hydrolysis. Carbohyd Poly 143, 279–287 (2016)

    Article  Google Scholar 

  58. ISO 536:2019. Paper and board - Determination of grammage. Test methods and quality specifications for paper and board (2019).

  59. Fehling, H.: The quantitative determination of sugar and starch by means of copper sulfate. Ann. Chem. Pharm. 72(1), 106–113 (1849)

    Article  Google Scholar 

  60. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)

    Article  Google Scholar 

  61. Hao, X., Wen, P., Wang, J., Wang, J., You, J., Zhang, J.: Production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar by two-step enzymatic hydrolysis. Biores. Technol. 297, 122349 (2020)

    Article  Google Scholar 

  62. Hao, X., Xu, F., Zhang, J.: Effect of pre-treatments on production of xylooligosaccharides and monosaccharides from corncob by a two-step hydrolysis. Carbohyd. Polym. 285, 119217 (2022)

    Article  Google Scholar 

  63. Deshavath, N.N., Mukherjee, G., Goud, V.V., Veeranki, V.D., Sastri, C.V.: Pitfalls in the 3.5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. Int. J. Biol. Macromol. 156, 180–185 (2020)

    Article  Google Scholar 

  64. Ziaei-Rad, Z., Fooladi, J., Pazouki, M., Gummadi, S.N.: Lignocellulosic biomass pre-treatment using low-cost ionic liquid for bioethanol production: An economically viable method for wheat straw fractionation. Biomass Bioenergy 151, 106140 (2021)

    Article  Google Scholar 

  65. Bian, J., Peng, P., Peng, F., Xiao, X., Xu, F., Sun, R.-C.: Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food Chem. 156, 7–13 (2014)

    Article  Google Scholar 

  66. Boonchuaya, P., Techapun, C., Leksawasdi, N., Seesuriyachan, P., Hanmoungjai, P., Watanabe, M., Takenaka, S., Chaiyaso, T.: An integrated process for xylooligosaccharide and bioethanol production from corncob. Biores. Technol. 256, 399–407 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge suggestions from Dr. Bruna Pratto for experimental preparation.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

ESdS: cardboard characterization and pre-treatment, acid hydrolysis and ionic liquid synthesis. GPP: cardboard characterization, acid hydrolysis and pre-treatment, and NMR analysis. LMA: acid hydrolysis and sugar determination. MSP: acid hydrolysis and sugar determination. ACL: experimental supervision, result discussion, and review of the manuscript draft. RBT: experimental suggestions and review of the manuscript draft. RGdS: general supervision, experimental assistance, analysis and discussion of results, and final manuscript writing.

Corresponding author

Correspondence to Ronaldo Gonçalves dos Santos.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflict of interest.

Ethics Approval and Consent to Participate

All of the authors approved the manuscript submission.

Consent for Publication

The authors agree with the manuscript submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.S., Policarpo, G.P., Antonio, L.M. et al. Sugar Production from Cardboard Waste by Two-Step Acid Hydrolysis Using Ionic Liquid. Waste Biomass Valor 15, 2637–2649 (2024). https://doi.org/10.1007/s12649-023-02300-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02300-7

Keywords

Navigation