Skip to main content
Log in

Binder-Free Textile PAN-Based Electrodes for Aqueous and Glycerol-Based Electrochemical Supercapacitors

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Amidst different types of energy storage systems, electrochemical supercapacitors have received considerable attention as they close the gap between electrolytic capacitors and batteries. This work addresses electric double-layer capacitors (EDLCs), a type of electrochemical supercapacitor, and has been divided into two parts. In the former, the synthesis and characterization of activated carbon fiber-felt (ACFF) electrodes, derived from textile PAN-based fiber, have been provided. In the latter, the electrochemical characterization of EDLCs in potassium hydroxide solutions (aqueous electrolytes) and in potassium hydroxide-glycerol hybrid electrolytes (glycerol-based electrolytes) have been investigated. The synthesis of ACFF electrodes via two-step oxidation, carbonization, and physical activation resulted in low-cost and binder-free electrodes containing 87% of the total volume of pores as micropores (maximum pore width of 3 nm) and a high specific surface area of 1875 m2 g−1. Electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge techniques were carried out in a symmetric two-electrode setup at room temperature. The results showed that ACFF electrodes are suitable for aqueous electrolytes, particularly 2 M KOH, and KOH:GLY (3:1), a glycerol-based electrolyte. Although KOH:GLY (3:1) exhibited high electrolyte resistance (34 ± 3 Ω), this hybrid green-electrolyte supports a potential window that is twice greater than that of aqueous electrolytes. In addition, glycerol, commonly called glycerin, is a by-product of FAME (fatty acid methyl ester) biodiesel, which is the major source of glycerol. Glycerol-based electrolytes are promising green electrolytes for EDLCs. Therefore, it is necessary to decrease its viscosity and resistance.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yang, Y., Han, Y., Jiang, W., Zhang, Y., Xu, Y., Ahmed, A. M.: Application of the supercapacitor for energy storage in China: role and strategy. Appl Sci (2021). doi:https://doi.org/10.3390/app12010354.

  2. Scibioh, M.A., Viswanathan, B.: Supercapacitor: an introduction. In: Materials for supercapacitor applications, pp. 1–13. Elsevier (2020).

  3. Shang, W., Yu, W., Xiao, X., Ma, Y., He, Y., Zhao, Z., Tan, P.: Insight into the self-discharge suppression of electrochemical capacitors: Progress and challenges. Adv Powder Mater (2023). https://doi.org/10.1016/j.apmate.2022.100075

    Article  Google Scholar 

  4. González, A., Goikolea, E., Barrena, J.A., Mysyk, R.: Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  Google Scholar 

  5. Kurzweil, P.: Typical applications – electrochemical double-layer capacitors. In: Electrochemical energy storage for renewable sources and grid balancing, pp. 352. Elsevier (2015).

  6. Pore, O.C., Fulari, A.V., Shejwal, R.V., Fulari, V.J., Lohar, G.M.: Review on recent progress in hydrothermally synthesized MCo2O4/rGO composite for energy storage devices. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.131544

    Article  Google Scholar 

  7. Sagadevan, S., Marlinda, A.R., Chowdhury, Z.Z., Wahab, Y.B.A., Hamizi, N.A., Shahid, M.M., Mohammad, F., Podder, J. Johan, M.R.: Fundamental electrochemical energy storage systems. In: Advances in supercapacitor and supercapattery, pp. 31–37. Elsevier (2021).

  8. Yu, A., Chabot, V., Xhang, J.: Fundamentals of electrochemical pseudocapacitors. In: Electrochemical supercapacitors for energy storage and delivery, pp 99–102. CRC Press (2013).

  9. Bhat, T.S., Patil, P.S., Rakhi, R.B.: Recent trends in electrolytes for supercapacitors. J Energy Storage (2022). https://doi.org/10.1016/j.est.2022.104222

    Article  Google Scholar 

  10. Aziz, S.B., Hamsan, M.H., Brza, M.A., Kadir, M.F.Z., Muzakir, S.K., Abdulwahid, R.T.: Effect of glycerol on EDLC characteristics of chitosan:methylcellulose polymer blend electrolytes. J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.05.114

    Article  Google Scholar 

  11. Mistry, A., Trask, S., Dunlop, A., Jeka, G., Polzin, B., Mukherjee, P.P., Srinivasan, V.: Quantifying negative effects of carbon-binder networks from electrochemical performance of porous li-ion electrodes. J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/ac1033

    Article  Google Scholar 

  12. Ahmed, F.M., Reda, M.M., El-Aziz, H.A.A., Othman, H.A.: Overview of different fabric structures. J. Text. Color. Polym. Sci. (2022). https://doi.org/10.21608/jtcps.2022.152641.1131

    Article  Google Scholar 

  13. Chen, J.Y.: Activated carbon fiber – Introduction. In: Activated carbon fiber and textiles, pp. 4–5. Woodhead Publishing Series in Textiles (2017).

  14. Yue, Z., Economy, J..: Thermooxidative stabilization of PAN fibers. In: Activated Carbon Fiber and Textiles, pp. 64–66. Woodhead Publishing Series in Textiles (2017).

  15. Marcuzzo, J.S., Cuña, A., Tancredo, N., Mendez, E., Bernardi, H.H.: Microporous activated carbon fiber felt from Brazilian textile PAN fiber: preparation, characterization, and application as super capacitor electrode. Rev. Bras. Apl. Vac. (2016). https://doi.org/10.17563/rbav.v35i2.1022

    Article  Google Scholar 

  16. Rodrigues, A.C., Silva, E.L., Quirino, S.F., Cuna, A., Marcuzzo, J.S., Matsushima, J.T., Gonçalves, E.S., Baldan, M.R.: Ag@Activated carbon felt composite as electrode for supercapacitors and a study of three different aqueous electrolytes. Mater. Res. (2019). https://doi.org/10.1590/1980-5373-MR-2018-0530

    Article  Google Scholar 

  17. Rodrigues, A.C., Munhoz, M.G.C., Pinheiro, B.S., Batista, A.F., Amaral-Labat, G.A., Cuña, A., Matsushima, J.T., Marcuzzo, J.S., Baldan, M.R.: N-activated carbon fiber produced by oxidation process design and its application as supercapacitor electrode. J. Porous Mater. (2020). https://doi.org/10.1007/s10934-019-00799-7

    Article  Google Scholar 

  18. Matsushima, J.T., Rodrigues, A.C., Marcuzzo, J.S., Cuna, A., Baldan, M.R.: 3D-interconnected framework binary composite based on polypyrrole/textile polyacrylonitrile-derived activated carbon fiber felt as supercapacitor electrode. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03568-4

    Article  Google Scholar 

  19. Taer, E., Febriyanti, F., Apriwandi, Taslim, R., Augustino, Mustika, W.S.: Investigation of H2SO4 and KOH aqueous electrolyte on the electrochemical performance of activated carbon derived from areca catechu husk. J Phys (2021). doi:https://doi.org/10.1088/1742-6596/1940/1/012033.

  20. Chen, J., Lee, P.: Electrochemical supercapacitors: from mechanism understanding to multifunctional applications. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202003311

    Article  Google Scholar 

  21. Scibioh, M.A., Viswanathan, B.: Introduction – electrolyte materials for supercapacitors. In: Materials for supercapacitor applications, pp. 207–208. Elsevier (2020).

  22. PNO: Market Analysis and Stakeholders report. In: EU project GLAMOUR – Glycerol to Biofuel: market, technologies, and players. https://www.pnoconsultants.com/innovationservices/wp-content/uploads/sites/9/2022/12/Glamour-report-glycerol-to-biofuel.pdf (2020). Accessed 6 May 2023.

  23. Pagliaro, M.: Properties, applications, history, and market. In: Glycerol, pp. 1–6. Elsevier (2017).

  24. Díaz-Álvarez, A.E., Cadierno, V.: Glycerol: a promising green solvent and reducing agent for metal-catalyzed transfer hydrogenation reactions and nanoparticles formation. Appl. Sci. (2013). https://doi.org/10.3390/app3010055

    Article  Google Scholar 

  25. Lenardão, E.J., Barcellos, A.M., Penteado, F., Alves, D., Perin, G.: Glycerol as a solvent in organic synthesis. Revista Virtual de Química (2017). https://doi.org/10.21577/1984-6835.20170015

    Article  Google Scholar 

  26. Naser, J., Mjalli, B., Jibril, S., Al-Hatmi, Gano, Z.: Potassium carbonate as a salt for deep eutectic solvents. Int J Chem Eng Appl (2013). doi: https://doi.org/10.7763/IJCEA.2013.V4.275.

  27. Cojocaru, A., Brincoveanu, O., Pantazi, A., Balan, D., Enaschescu, M., Visan, T., Anicai, L.: Electrochemical preparation of Ag nanoparticles involving choline chloride – glycerol deep eutectic solvents. Bulgarian Chem Commun Special Issue 49, 194–204 (2017)

    Google Scholar 

  28. Faraone, A., Wagle, D.V., Baker, G.A., Novak, E.C., Ohl, M., Reuter, D., Lunkenheimer, P., Loidl, A., Mamontov, E.: Glycerol hydrogen-bonding network dominates structure and collective dynamics in a deep eutectic solvent. J. Phys. Chem. (2018). https://doi.org/10.1021/acs.jpcb.7b11224

    Article  Google Scholar 

  29. Cevik, E., Gunday, S.T., Bozkurt, A., Amine, R., Amine, K.: Bio-inspired redox mediated electrolyte for high performance flexible supercapacitor applications over broad temperature domain. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2020.228544

    Article  Google Scholar 

  30. Junior, M.A.A., Matsushima, J.T., Rezende, M.C., Gonçalves, E.S., Marcuzzo, J.S., Baldan, M.R.: Production and characterization of activated carbon fiber from textile PAN Fiber. J. Aerosp. Technol. Manag. (2017). https://doi.org/10.5028/jatm.v9i4.831

    Article  Google Scholar 

  31. Arbizzani, C., Yu, Y., Xiao, J., Xia, Y., Yang, Y., Santato, C., Raccichini, R., Passerini, S.: Good practice guide for papers on supercapacitors and related hybrid capacitors for the Journal of Power Sources. J. Power Sources (2020). https://doi.org/10.1016/j.jpowsour.2019.227636

    Article  Google Scholar 

  32. Balducci, A., Belanger, D., Brousse, T., Long, J.W., Sugimoto, W.: A guideline for reporting performance metrics with electrochemical capacitors: from electrode materials to full devices. J. Electrochem. Soc. (2017). https://doi.org/10.1149/2.0851707jes

    Article  Google Scholar 

  33. Kurra, N., Jiang, Q.: Electrochemical characterization techniques for supercapacitors. In: Storing energy with special reference to renewable energy sources, pp. 401–403. Elsevier (2022).

  34. Jinitha, C.G., Jeba, S.V., Sonia, S. Ramachandran, R.: Fundamentals of supercapacitors. In: Smart supercapacitors fundamentals, structures, and applications, pp. 85–87. Elsevier (2023).

  35. Muzaffar, A., Ahamed, M.B, Hussain, C.M.: Electrolyte materials for supercapacitors. In: Smart supercapacitors fundamentals, structures, and applications, pp. 231–232. Elsevier (2023).

  36. Zhang, S., Pan, N.: Supercapacitors Performance Evaluation. Adv Energy Mater (2015). https://doi.org/10.1002/aenm.201401401

    Article  Google Scholar 

  37. Pandolfo, T., Ruiz, V., Sivakkumar, S., Nerkar, J.: General properties of electrochemical capacitors. In: Supercapacitors: materials, systems, and applications, pp. 70 - 71- . Wiley-VCH (2013).

  38. Muzaffar, A., Ahamed, M.B., Hussain, C.M.: Testing and measurement techniques for supercapacitors. In: Smart supercapacitors fundamentals, structures, and applications, pp. 667. Elsevier (2023).

  39. Jiménez, V., Sánchez, P., Romero, A.: Materials for activated carbon fiber synthesis. In: Activated carbon fiber and textiles, pp. 21–38. Woodhead Publishing Series in Textiles (2017).

  40. Zhang, X.H., Li, Q.W.: Carbon fiber spinning. In: Activated carbon fiber and textiles, pp. 39–60. Woodhead Publishing Series in Textiles (2017).

  41. Yue, Z., Economy, J.: Carbonization process – Carbonization and activation for production of activated carbon fibers. In: Activated carbon fiber and textiles, pp. 78. Woodhead Publishing Series in Textiles (2017).

  42. Yue, Z., Economy, J.: Activation process – Carbonization and activation for production of activated carbon fibers. In: Activated carbon fiber and textiles, pp. 85–86. Woodhead Publishing Series in Textiles (2017).

  43. Yue, Z., Economy, J.: Development of porosity – Carbonization and activation for production of activated carbon fibers. In: Activated carbon fiber and textiles, pp. 89–94. Woodhead Publishing Series in Textiles (2017).

  44. Donohue, M.D., Aranovich, G.L.: Classification of Gibbs adsorption isotherms. Adv. Coll. Interface. Sci. 76–77, 137–152 (1998)

    Article  Google Scholar 

  45. Chang, S.S., Clair, B., Ruelle, J., Beauchêne, J., Renzo, J.D., Quignard, F., Zhao, G.J., Yamamoto, H., Gril, J.: Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Bot. (2009). https://doi.org/10.1093/jxb/erp133

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gleysteen, L.F., Deitz, V.R.: Hysteresis I the physical adsorption of nitrogen on bone char and other adsorbents. J. Res. Natl. Bur. Stand. 35, 285–307 (1945)

    Article  CAS  Google Scholar 

  47. Lahrar, H.E., Simon, P., Merlet, C.: Carbon-carbon supercapacitors: Beyond the average pore size or how electrolyte confinement and inaccessible pores affect the capacitance. J Chem Phys (2021). https://hal.science/hal-03388764.

  48. Kurzweil, P.: Pore Geometry – electrochemical double-layer capacitors. In: Electrochemical energy storage for renewable sources and grid balancing, pp. 352. Elsevier (2015).

  49. Scibioh, M.A., Viswanathan, B.: Electric double-layer in supercapacitors – fundamentals and energy storage mechanisms - overview. In: Materials for supercapacitor applications, pp. 27–29. Elsevier (2020).

  50. Kurzweil, P.: Diffusion impedance–electrochemical double-layer capacitors. In: Electrochemical energy storage for renewable sources and grid balancing, pp. 357. Elsevier (2015).

  51. Chen, J.Y.: ACF/CF structures and properties – Introduction. In: Activated carbon fiber and textiles, pp. 9–11. Woodhead Publishing Series in Textiles (2017).

  52. Yue, Z., Economy, J.: Physical activation – Carbonization and activation for production of activated carbon fibers. In: Activated carbon fiber and textiles, pp. 86. Woodhead Publishing Series in Textiles (2017).

  53. Farnsworth, A., Chirima, G., Yu, F.: Raman spectroscopy: a key technique in investigating carbon-based materials. Spectroscopy Online. https://www.spectroscopyonline.com/view/raman-spectroscopy-a-key-technique-in-investigating-carbon-based-materials (2021). Accessed 30 April 2020.

  54. Barzegar, F., Momodu, D.Y., Fashedemi, O.O., Bello, A., Dangbegnon, J.K., Manyala, N.: Investigation of different aqueous electrolytes on the electrochemical performance of activated the electrochemical performance of activate. R Soc Chem (2015). https://doi.org/10.1039/c5ra21962k

    Article  Google Scholar 

  55. Mathis, T.S., Kurra, N., Wang, X., Pinto, D., Simon, P., Gogotsi, Y.: Energy storage data reporting in perspective-guidelines for interpreting the performance of electrochemical energy storage systems. Adv Energy Mater (2019). https://hal.science/hal-02519795.

  56. Castro-Gutiérrez, J., Celzard, A., Fierro, V.: Energy storage in supercapacitors: focus on tannin-derived carbon electrodes. Front. Mater. (2020). https://doi.org/10.3389/fmats.2020.00217

    Article  Google Scholar 

  57. Kurzweil, P.: Electrolyte solution – electrochemical double-layer capacitors. In: Electrochemical energy storage for renewable sources and grid balancing, pp. 372–374. Elsevier (2015).

  58. Scibioh, M.A., Viswanathan, B.: Cyclic voltammetry – characterization methods for supercapacitors. In: Materials for supercapacitor applications, pp. 323–327. Elsevier (2020).

  59. Scibioh, M.A., Viswanathan, B.: Pseudocapacitance – fundamentals and energy storage mechanisms - overview. In: Materials for supercapacitor applications, pp. 29–30. Elsevier (2020).

  60. Taberna, P.L., Simon, P.: Electrochemical impedance spectroscopy – most used electrochemical techniques. In: Supercapacitor – materials, systems, and applications, pp. 119–123. Wiley - VCH (2013).

  61. Wang, Y., Song, Y., Xia, Y.: Electrochemical capacitor: mechanism, materials, systems, characterization, and applications. Chem. Soc. Rev. (2016). https://doi.org/10.1039/c5cs00580a

    Article  PubMed  PubMed Central  Google Scholar 

  62. Taberna, P.L., Simon, P.: Supercapacitor impedance - electrochemical techniques. In: Supercapacitor – materials, systems, and applications, pp. 124–129. Wiley - VCH (2013).

  63. Pal, B., Yang, S., Ramesh, S., Thangadurai, V., Jose, R.: Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. (2019). https://doi.org/10.1039/c9na00374f

    Article  PubMed  PubMed Central  Google Scholar 

  64. Scibioh, M.A., Viswanathan, B.: Electrochemical impedance spectroscopy – characterization methods for supercapacitors. In: Materials for supercapacitor applications, pp. 330–336. Elsevier (2020).

  65. Farma, R., Deraman, M., Awitdrus, Talib, I.A., Omar, R., Manjunatha, J.G., Ishak, M.M., Basri, N.H., Dolah, B.N.M.: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8, 257–273 (2013)

    Article  CAS  Google Scholar 

  66. Benabithe, Z.Z., Diossa, G., Castro, C.D., Quintana, G.: Activated Carbon Bio-Xerogels as Electrodes for Super Capacitors Applications. Procedia Engineering (2016). https://doi.org/10.1016/j.proeng.2016.06.470

    Article  Google Scholar 

  67. Gomes, J.F., Gasparotto, L.H.S., Tremiliosi-Filho, G.: Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity. Phys. Chem. Chem. Phys. (2013). https://doi.org/10.1039/c3cp50280e

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Academic Excellence Program (PROEX) within the Coordination for the Improvement of Higher Education Personnel (CAPES). Textile Pan-based fiber was supplied by JMHP Carbon.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ingrid Ariani Belineli Barbosa, Jossano Saldanha Marcuzzo, Ivana Conte Cosentino and Rubens Nunes de Faria Junior. The first draft of the manuscript was written by Ingrid Ariani Belineli Barbosa and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ingrid Ariani Belineli Barbosa.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belineli Barbosa, I.A., Marcuzzo, J.S., Cosentino, I.C. et al. Binder-Free Textile PAN-Based Electrodes for Aqueous and Glycerol-Based Electrochemical Supercapacitors. Waste Biomass Valor 15, 1005–1018 (2024). https://doi.org/10.1007/s12649-023-02208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02208-2

Keywords

Navigation