Skip to main content
Log in

Effect of Ferrocene on Physicochemical Properties of Biochar Extracted from Windmill Palm Tree (Trachycarpus Fortunei)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The transformation of agro-waste into biochar using thermochemical processes aids in the management and disposal of biomass with the potential to provide significant energy. Different biochars exhibit different characteristics and performances depending on the fabrication method employed. Besides, many applications, such as remediation to adsorb heavy metals which favor biochars rich with oxygen-containing functional groups on their surface. Therefore, this study deals with the catalytic carbonization of the rachis part in windmill palm trees with ferrocene at different temperatures (300, 350, 450, and 500 °C), time intervals (25, 40, and 90 min.), and ratios (3:1, 3:2, and 3:3 palm tree: ferrocene ratio) to produce oxidized nanobiochar. The highest electronegativity’s (− 61.8 and − 64 mV) for PTONB were observed when samples were prepared at 350 °C, 90 min., 3:1 PT: F and 350 °C, 25 min., 3:2 PT: F, respectively. Morphological analysis showed that, the carbonization of windmill palm tree at 350 °C, 90 min. without ferrocene give spherical nano-biochar with bulky particle size of 237 nm. However, after ferrocene treatment, the nanobiochar particle size was reduced, ranging from 87 to 3 nm. Thus, the ferrocene/palm tree catalytic carbonization process is highly relevant to decreasing particle sizes. Consequently, based on the findings from physicochemical analyses (e.g., SEM-EDX, ATR-FTIR, X-ray diffraction, and high-resolution TEM), a straightforward and rapid method to synthesize an oxidized nano-biochar, with a wide variety of structural characterizations, at a low temperature in a single step under a muffled atmosphere has been developed.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available upon request from the corresponding author.

Abbreviations

ATR-FTIR:

Attenuated Fourier transformer infrared

EDX:

Energy dispersive X-ray

ESEM:

Environmental scanning electron microscopy

F:

Ferrocene

PT:

Palm tree

PTNB:

Palm tree nanobiochar

PTONB:

Palm tree oxidized nanobiochar

RW:

Residual weight

S1, S2, S3 & S4:

Samples 1, 2, 3 & 4: Carbonization using 3:1(PT: F) for 25 min at 300, 350, 450 & 550 °C

S5 & S6:

Samples 5 & 6: Carbonization for 25 min. at 350 °C using 3:2 and 3:3 (PT:F)

S7 & S8:

Samples 7 & 8: Carbonization using 3:1(PT:F) at 350 °C for 40 and 90 min

TGA:

Thermo-gravimetric analysis

TEM:

Transmission electron micrographs

XRD:

X-ray diffraction analysis

References

  1. Date, Country showcase, Food and agriculture organization of the United Nation, FAO.https://www.fao.org/country-showcase/selected-product-detail/en/c/1287948/ (2020)

  2. Li, J., Zhang, X., Zhu, J., Yu, Y., Wang, H.: Structural, chemical, and multi-scale mechanical characterization of waste windmill palm fiber (Trachycarpus fortunei). J. Wood Sci. 66, 8 (2020). https://doi.org/10.1186/s10086-020-1851-z

    Article  CAS  Google Scholar 

  3. Jonoobi, M., Shafie, M., Shirmohammadli, Y., Ashori, A., Zarea-Hosseinabadi, H., Mekonnen, T.: A review on date palm tree: properties, characterization and its potential applications. J. Renew. Mater. 7, 1055–1075 (2019). https://doi.org/10.32604/jrm.2019.08188

    Article  CAS  Google Scholar 

  4. Li, C., Lin, J., Zhao, G., Zhang, J.: Windmill palm (Trachycarpus fortunei) fibers for the preparation of activated carbon fibers. BioResources 11, 1596–1608 (2016). https://doi.org/10.15376/biores.11.1.1596-1608

    Article  CAS  Google Scholar 

  5. Zhu, J., Li, J., Wang, C., Wang, H.: Anatomy of the windmill palm (Trachycarpus fortunei) and its application potential. Forests 10, 1130 (2019). https://doi.org/10.3390/f10121130

    Article  Google Scholar 

  6. Awad, S., Zhou, Y., Katsou, E., Li, Y., Fan, M.: A critical review on date palm tree (Phoenix dactylifera L.) fibres and their uses in bio-composites. Waste Biomass Valoriz. 12, 2853–2887 (2021). https://doi.org/10.1007/s12649-020-01105-2

    Article  CAS  Google Scholar 

  7. Mohan, D., Sarswat, A., Ok, Y.S., Pittman, C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 160, 191–202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120

    Article  CAS  PubMed  Google Scholar 

  8. Cheah, S., Jablonski, W.S., Olstad, J.L., Carpenter, D.L., Barthelemy, K.D., Robichaud, D.J., Andrews, J.C., Black, S.K., Oddo, M.D., Westover, T.L.: Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition. Green. Chem. 18, 6291–6304 (2016). https://doi.org/10.1039/C6GC01661H

    Article  CAS  Google Scholar 

  9. Monisha, R.S., Mani, R.L., Sivaprakash, B., Rajamohan, N., Vo, D.-V.N.: Green remediation of pharmaceutical wastes using biochar: a review. Environ. Chem. Lett. 20, 681–704 (2022). https://doi.org/10.1007/s10311-021-01348-y

    Article  CAS  Google Scholar 

  10. Berslin, D., Reshmi, A., Sivaprakash, B., Rajamohan, N., Kumar, P.S.: Remediation of emerging metal pollutants using environment friendly biochar- review on applications and mechanism. Chemosphere. 290, 133384 (2022). https://doi.org/10.1016/j.chemosphere.2021.133384

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Xia, D., Tan, F., Zhang, C., Jiang, X., Chen, Z., Li, H., Zheng, Y., Li, Q., Wang, Y.: ZnCl2 -activated biochar from biogas residue facilitates aqueous as(III) removal. Appl. Surf. Sci. 377, 361–369 (2016). https://doi.org/10.1016/j.apsusc.2016.03.109

    Article  ADS  CAS  Google Scholar 

  12. Akintola, A.T., Ayankunle, A.Y.: Correction: improving pharmaceuticals removal at wastewater treatment plants using biochar: a review. Waste Biomass Valoriz. (2023). https://doi.org/10.1007/s12649-023-02093-9

    Article  Google Scholar 

  13. Wei, D., Li, B., Huang, H., Luo, L., Zhang, J., Yang, Y., Guo, J., Tang, L., Zeng, G., Zhou, Y.: Biochar-based functional materials in the purification of agricultural wastewater: Fabrication, application and future research needs. Chemosphere. 197, 165–180 (2018). https://doi.org/10.1016/j.chemosphere.2017.12.193

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Zhu, Q., Liang, Y., Zhang, Q., Zhang, Z., Wang, C., Zhai, S., Li, Y., Sun, H.: Corrigendum to: “Biochar derived from hydrolysis of sewage sludge influences soil properties and heavy metals distributed in the soil. J. Hazard. Mater. 443, 130323 (2023). https://doi.org/10.1016/j.jhazmat.2022.130323

    Article  CAS  PubMed  Google Scholar 

  15. Titova, J., Baltrėnaitė, E.: Physical and chemical properties of biochar produced from sewage sludge compost and plants biomass, fertilized with that compost, important for soil improvement. Waste Biomass Valoriz 12, 3781–3800 (2021). https://doi.org/10.1007/s12649-020-01272-2

    Article  CAS  Google Scholar 

  16. Ferreira, S.D., Manera, C., Silvestre, W.P., Pauletti, G.F., Altafini, C.R., Godinho, M.: Use of biochar produced from elephant grass by pyrolysis in a screw reactor as a soil amendment. Waste Biomass Valoriz 10, 3089–3100 (2019). https://doi.org/10.1007/s12649-018-0347-1

    Article  CAS  Google Scholar 

  17. Yan, C., Wang, W., Nie, M., Ding, M., Wang, P., Zhang, H., Huang, G.: Characterization of copper binding to biochar-derived dissolved organic matter: effects of pyrolysis temperature and natural wetland plants. J. Hazard. Mater. 442, 130076 (2023). https://doi.org/10.1016/j.jhazmat.2022.130076

    Article  CAS  PubMed  Google Scholar 

  18. Shrestha, P., Chun, D.D., Kang, K., Simson, A.E., Klinghoffer, N.B.: Role of metals in biochar production and utilization in catalytic applications: a review. Waste Biomass Valoriz. 13, 797–822 (2022). https://doi.org/10.1007/s12649-021-01519-6

    Article  CAS  Google Scholar 

  19. Zhou, Y., Liu, X., Tang, L., Zhang, F., Zeng, G., Peng, X., Luo, L., Deng, Y., Pang, Y., Zhang, J.: Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: performance and modelling. J. Hazard. Mater. 333, 80–87 (2017). https://doi.org/10.1016/j.jhazmat.2017.03.031

    Article  CAS  PubMed  Google Scholar 

  20. Uchimiya, M., Chang, S., Klasson, K.T.: Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J. Hazard. Mater. 190, 432–441 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.063

    Article  CAS  PubMed  Google Scholar 

  21. Balmuk, G., Videgain, M., Manyà, J.J., Duman, G., Yanik, J.: Effects of pyrolysis temperature and pressure on agronomic properties of biochar. J. Anal. Appl. Pyrolysis. 169, 105858 (2023). https://doi.org/10.1016/j.jaap.2023.105858

    Article  CAS  Google Scholar 

  22. Ok, Y.S., Chang, S.X., Gao, B., Chung, H.-J.: SMART biochar technology—A shifting paradigm towards advanced materials and healthcare research. Environ. Technol. Innov. 4, 206–209 (2015). https://doi.org/10.1016/j.eti.2015.08.003

    Article  Google Scholar 

  23. Rajapaksha, A.U., Chen, S.S., Tsang, D.C.W., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S.: Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere. 148, 276–291 (2016). https://doi.org/10.1016/j.chemosphere.2016.01.043

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Somanathan, T., Prasad, K., Ostrikov, K., Saravanan, A., Krishna, V.: Graphene oxide synthesis from agro waste. Nanomaterials 5, 826–834 (2015). https://doi.org/10.3390/nano5020826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin, S., Huang, W., Yang, H., Sun, S., Yu, J.: Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents. Bioresour. Technol. 314, 123749 (2020). https://doi.org/10.1016/j.biortech.2020.123749

    Article  CAS  PubMed  Google Scholar 

  26. Yang, X., Zhang, S., Ju, M., Liu, L.: Preparation and Modification of Biochar materials and their application in Soil Remediation. Appl. Sci. 9, 1365 (2019). https://doi.org/10.3390/app9071365

    Article  CAS  Google Scholar 

  27. Adel, A.M., El-Shafei, A., Ibrahim, A., Al-Shemy, M.: Extraction of oxidized nanocellulose from date palm (Phoenix Dactylifera L.) sheath fibers: influence of CI and CII polymorphs on the properties of chitosan/bionanocomposite films. Ind. Crops Prod. 124, 155–165 (2018). https://doi.org/10.1016/j.indcrop.2018.07.073

    Article  CAS  Google Scholar 

  28. Ma, X., Zhou, B., Budai, A., Jeng, A., Hao, X., Wei, D., Zhang, Y., Rasse, D.: Study of biochar properties by scanning electron microscope—Energy dispersive X-Ray spectroscopy (SEM-EDX). Commun. Soil. Sci. Plant. Anal. 47, 593–601 (2016). https://doi.org/10.1080/00103624.2016.1146742

    Article  CAS  Google Scholar 

  29. Kanjanarong, J., Giri, B.S., Jaisi, D.P., Oliveira, F.R., Boonsawang, P., Chaiprapat, S., Singh, R.S., Balakrishna, A., Khanal, S.K.: Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: evaluation of efficiency and mechanisms. Bioresour. Technol. 234, 115–121 (2017). https://doi.org/10.1016/j.biortech.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  30. Giri, B.S., Goswami, M., Kumar, P., Yadav, R., Sharma, N., Sonwani, R.K., Yadav, S., Singh, R.P., Rene, E.R., Chaturvedi, P., Singh, R.S.: Adsorption of Patent blue V from textile industry wastewater using Sterculia alata fruit shell biochar: evaluation of efficiency and mechanisms. Water 12, 2017 (2020). https://doi.org/10.3390/w12072017

    Article  CAS  Google Scholar 

  31. Werner, K., Pommer, L., Broström, M.: Thermal decomposition of hemicelluloses. J. Anal. Appl. Pyrolysis. 110, 130–137 (2014). https://doi.org/10.1016/j.jaap.2014.08.013

    Article  CAS  Google Scholar 

  32. Adel, A.M., El-Wahab, Z.H.A., Ibrahim, A.A., Al-Shemy, M.T.: Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part I. Acid catalyzed hydrolysis. Bioresour. Technol. 101, 4446–4455 (2010). https://doi.org/10.1016/j.biortech.2010.01.047

    Article  CAS  PubMed  Google Scholar 

  33. Astruc, D.: Why is ferrocene so exceptional? Eur. J. Inorg. Chem. (2017). https://doi.org/10.1002/ejic.201600983

    Article  Google Scholar 

  34. Toma, Å., Šebesta, R.: Applications of ferrocenium salts in organic synthesis. Synthesis 47, 1683–1695 (2015). https://doi.org/10.1055/s-0034-1379920

    Article  CAS  Google Scholar 

  35. Singh, A., Chowdhury, D.R., Paul, A.: A kinetic study of ferrocenium cation decomposition utilizing an integrated electrochemical methodology composed of cyclic voltammetry and amperometry. Analyst. 139, 5747–5754 (2014). https://doi.org/10.1039/c4an01325e

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Debbarma, J., Naik, M.J.P., Saha, M., Fullerenes: From agrowaste to graphene nanosheets: chemistry and synthesis. Fuller. Nanotub. Carbon Nanostruct. 27, 482–485 (2019). https://doi.org/10.1080/1536383X.2019.1601086

    Article  ADS  CAS  Google Scholar 

  37. Hoffmann, V., Jung, D., Zimmermann, J., Rodriguez Correa, C., Elleuch, A., Halouani, K., Kruse, A.: Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in Electrochemical Double-Layer Capacitors (EDLCs) and Direct Carbon Fuel Cells (DCFCs). Materials 12, 1703 (2019). https://doi.org/10.3390/ma12101703

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong, M., Zhang, L., Tan, Z., Huang, Q.: Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Environ. Sci. Pollut Res. 26, 19738–19748 (2019). https://doi.org/10.1007/s11356-019-05298-5

    Article  CAS  Google Scholar 

  39. Zhang, J., Huang, B., Chen, L., Du, J., Li, W., Luo, Z.: Pyrolysis kinetics of hulless barley straw using the distributed activation energy model (daem) by the tg/dta technique and sem/xrd characterizations for hulless barley straw derived biochar. Brazilian J. Chem. Eng. 35, 1039–1050 (2018). https://doi.org/10.1590/0104-6632.20180353s20170382

    Article  CAS  Google Scholar 

  40. Ahmad, M., Ahmad, M., Usman, A.R.A., Al-Faraj, A.S., Abduljabbar, A., Ok, Y.S., Al-Wabel, M.I.: Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ. Geochem. Health 41, 1687–1704 (2019). https://doi.org/10.1007/s10653-017-9947-0

    Article  CAS  PubMed  Google Scholar 

  41. Bernardino, C.A.R., Mahler, C.F., Veloso, M.C.C., Romeiro, G.A.: Preparation of biochar from sugarcane by-product filter mud by slow pyrolysis and its use like adsorbent. Waste Biomass Valoriz 8, 2511–2521 (2017). https://doi.org/10.1007/s12649-016-9728-5

    Article  CAS  Google Scholar 

  42. Komnitsas, K., Zaharaki, D., Pyliotis, I., Vamvuka, D., Bartzas, G.: Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals. Waste Biomass Valoriz. 6, 805–816 (2015). https://doi.org/10.1007/s12649-015-9364-5

    Article  CAS  Google Scholar 

  43. Lomenech, C., Hurel, C., Messina, L., Schembri, M., Tosi, P., Orange, F., Georgi, F., Mija, A., Kuzhir, P.: A humins-derived magnetic biochar for water purification by adsorption and magnetic separation. Waste Biomass Valoriz 12, 6497–6512 (2021). https://doi.org/10.1007/s12649-021-01481-3

    Article  CAS  Google Scholar 

  44. Wang, Y., Hu, Y., Zhao, X., Wang, S., Xing, G.: Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy  Fuels 27, 5890–5899 (2013). https://doi.org/10.1021/ef400972z

    Article  CAS  Google Scholar 

  45. Ulusal, A., Apaydın Varol, E., Bruckman, V.J., Uzun, B.B.: Opportunity for sustainable biomass valorization to produce biochar for improving soil characteristics. Biomass Convers. Biorefinery 11, 1041–1051 (2021). https://doi.org/10.1007/s13399-020-00923-7

    Article  CAS  Google Scholar 

  46. Kim, J.E., Bhatia, S.K., Song, H.J., Yoo, E., Jeon, H.J., Yoon, J.-Y., Yang, Y., Gurav, R., Yang, Y.-H., Kim, H.J., Choi, Y.-K.: Adsorptive removal of tetracycline from aqueous solution by maple leaf-derived biochar. Bioresour Technol. 306, 123092 (2020). https://doi.org/10.1016/j.biortech.2020.123092

    Article  CAS  PubMed  Google Scholar 

  47. Bilias, F., Kalderis, D., Richardson, C., Barbayiannis, N., Gasparatos, D.: Biochar application as a soil potassium management strategy: a review. Sci. Total Environ. 858, 159782 (2023). https://doi.org/10.1016/j.scitotenv.2022.159782

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Li, Z., Delvaux, B.: Phytolith-rich biochar: a potential Si fertilizer in desilicated soils. GCB Bioenergy 11, 1264–1282 (2019). https://doi.org/10.1111/gcbb.12635

    Article  CAS  Google Scholar 

  49. Ndoung, O.C.N., de Figueiredo, C.C., Ramos, M.L.G.: A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon 7, e08473 (2021). https://doi.org/10.1016/j.heliyon.2021.e08473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Saxena, M., Maity, S., Sarkar, S.: Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv. 4, 39948 (2014). https://doi.org/10.1039/C4RA06535B

    Article  ADS  CAS  Google Scholar 

  51. Yuan, S., Tan, Z.: Effect and mechanism of changes in physical structure and chemical composition of new biochar on Cu(II) adsorption in an aqueous solution. Soil. Ecol. Lett. 4, 237–253 (2022). https://doi.org/10.1007/s42832-021-0102-6

    Article  CAS  Google Scholar 

  52. Ahmad, M., Ahmad, M., Usman, A.R.A., Al-Faraj, A.S., Abduljabbar, A., Ok, Y.S., Al-Wabel, M.I.: Correction to: Date palm waste-derived biochar composites with silica and zeolite: synthesis, characterization and implication for carbon stability and recalcitrant potential. Environ. Geochem. Health 41, 1807–1807 (2019). https://doi.org/10.1007/s10653-017-0047-y

    Article  CAS  PubMed  Google Scholar 

  53. Naeem, M.A., Imran, M., Amjad, M., Abbas, G., Tahir, M., Murtaza, B., Zakir, A., Shahid, M., Bulgariu, L., Ahmad, I.: Batch and column scale removal of cadmium from water using raw and acid activated wheat straw biochar. Water 11, 1438 (2019). https://doi.org/10.3390/w11071438

    Article  CAS  Google Scholar 

  54. Wang, K., Peng, N., Lu, G., Dang, Z.: Effects of pyrolysis temperature and holding time on physicochemical properties of swine-manure-derived biochar. Waste Biomass Valoriz 11, 613–624 (2020). https://doi.org/10.1007/s12649-018-0435-2

    Article  CAS  Google Scholar 

  55. Santhosh, C., Daneshvar, E., Tripathi, K.M., Baltrėnas, P., Kim, T., Baltrėnaitė, E., Bhatnagar, A.: Synthesis and characterization of magnetic biochar adsorbents for the removal of cr(VI) and acid orange 7 dye from aqueous solution. Environ. Sci. Pollut Res. 27, 32874–32887 (2020). https://doi.org/10.1007/s11356-020-09275-1

    Article  CAS  Google Scholar 

  56. He, P., Liu, Y., Shao, L., Zhang, H., Lü, F.: Particle size dependence of the physicochemical properties of biochar. Chemosphere. 212, 385–392 (2018). https://doi.org/10.1016/j.chemosphere.2018.08.106

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Andjelkovic, I., Tran, D.N.H., Kabiri, S., Azari, S., Markovic, M., Losic, D.: Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl. Mater. Interfaces 7, 9758–9766 (2015). https://doi.org/10.1021/acsami.5b01624

    Article  CAS  PubMed  Google Scholar 

  58. Pawar, A., Panwar, N.L.: Experimental investigation on biochar from groundnut shell in a continuous production system. Biomass Convers. Biorefin. 12, 1093–1103 (2022). https://doi.org/10.1007/s13399-020-00675-4

    Article  CAS  Google Scholar 

  59. Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., Yang, L.: Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 240, 574–578 (2014). https://doi.org/10.1016/j.cej.2013.10.081

    Article  CAS  Google Scholar 

  60. Coats, A.W., Redfern, J.P.: Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964). https://doi.org/10.1038/201068a0

    Article  ADS  CAS  Google Scholar 

  61. Xu, Z., Xiao, X., Fang, P., Ye, L., Huang, J., Wu, H., Tang, Z., Chen, D.: Comparison of combustion and pyrolysis behavior of the peanut shells in air and N2: kinetics, thermodynamics and gas emissions. Sustainability (2020). https://doi.org/10.3390/su12020464

    Article  Google Scholar 

  62. Al-shemy, M.T., Al-sayed, A., Dacrory, S.: Fabrication of sodium alginate/graphene oxide/nanocrystalline cellulose scaffold for methylene blue adsorption: kinetics and thermodynamics study. Sep. Purif. Technol. 290, 120825 (2022). https://doi.org/10.1016/j.seppur.2022.120825

    Article  CAS  Google Scholar 

  63. El-Sabour, M.A., Mohamed, A.L., El-Meligy, M.G., Al-Shemy, M.T.: Characterization of recycled waste papers treated with starch/organophosphorus-silane biocomposite flame retardant. Nord. Pulp Pap. Res. J. 36, 108–124 (2021). https://doi.org/10.1515/npprj-2020-0075

    Article  CAS  Google Scholar 

  64. da Silva, D.R., Crespi, M.S., Crnkovic, P.C.G.M., Ribeiro, C.A.: Pyrolysis, combustion and oxy-combustion studies of sugarcane industry wastes and its blends. J. Therm. Anal. Calorim. 121, 309–318 (2015). https://doi.org/10.1007/s10973-015-4532-1

    Article  CAS  Google Scholar 

  65. Galina, N.R., Romero Luna, C.M., Arce, G.: Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis. J. Energy Inst. 92, 741–754 (2019). https://doi.org/10.1016/j.joei.2018.02.008

    Article  CAS  Google Scholar 

Download references

Funding

This research was partially supported by the Women for Africa Foundation (FMxA) program. The authors thank The Women for Africa Foundation (FMxA) program for this opportunity to complete the project in Material Physics Center (CFM). We kindly acknowledge the financial support of CSIC (I-COOP + 2020 COOPB20502), and the Ministerio de Ciencia, Innovación y Universidades code PID2019-104650GB-C21 (MCIU/AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AMA, JM-S, MTA-S, and SC. The first draft of the manuscript was written by AMA, JM-S, MTA-S, and SC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Abeer M. Adel.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5040.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adel, A.M., Martinez-Sabando, J., Al-Shemy, M.T. et al. Effect of Ferrocene on Physicochemical Properties of Biochar Extracted from Windmill Palm Tree (Trachycarpus Fortunei). Waste Biomass Valor 15, 1031–1051 (2024). https://doi.org/10.1007/s12649-023-02201-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02201-9

Keywords

Navigation