Skip to main content

Advertisement

Log in

Enhancing banana fibre to concrete adhesion through an optimised wood ash treatment process

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The adhesion of high strength natural fibres with concrete matrix has often been put into question. In this perspective, natural fibre treatment serves as the ultimate approach to increase surface roughness and subsequently the bonding ability of the fibre. The aim of this study was therefore, to analyse the treatment effects of different wood ash concentrations on musa acuminata banana fibre. The peculiarity of using wasted wood ash for the treatment of waste-derived banana fibre was a key highlight of this research; fostering biomass valorization. Contact angle analysis gave favourable results for 16% wood ash treated fibre and the Young Dupre wettability method was adopted to determine the interfacial adhesion, represented as the ‘work of adhesion’. At the same fibre treatment, an increase of 50% was noted for the work of adhesion as compared to untreated fibres. This finding was indeed beneficial for adhesion of the treated fibre in concrete for the fibre had undergone much surface roughening as observed from the SEM image. A zero slump and highest VeBe time were obtained as in-situ parameters of the fresh treated fibre-based concrete. The crucial finding to validate the use of treated fibre in concrete, confirmed that indeed more physical adhesion was present between the interface of the treated fibre and concrete as compared with the untreated fibre. Such a statement revealed true with an increase of 27.1% in the compressive strength result of the treated fibre-reinforced concrete in comparison with the untreated fibre-based concrete. Thus, the effectiveness of treating banana fibres with wood ash solution was evidenced by the increase in adhesion ability of the fibre to the concrete for which an increase in compressive strength supported the results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Available from the authors.

Notes

  1. Ren, G., Yao, B., Ren, M and Gao, X: Utilization of natural sisal fibers to manufacture eco-friendly ultra-high performance concrete with low autogenous shrinkage. Journal of Cleaner Production, Volume 332, (2022).

  2. Islam, R and Alam, A K M K.: Study of Fiber Reinforced Concrete With Natural Fibres. Proc., ISFRC, Vol. II, Madras, India, (1987).

  3. Ren, G., Wang, J., Wen, X and Gao, X: Using sol–gel deposition of nanosilica to enhance interface bonding between sisal fiber and ultra-high performance concrete. Cement and Concrete Composites, Volume 133, (2022).

  4. Chou, C T., Penn, L S.: The Journal of Adhesion. 36, 2-3 (1991); Venables, J D. Journal of Materials Science. 19, 2431-2453 (1984).

  5. van Oss, C J.: Interfacial Forces in Aqueous Media, Marcel Dekker: New York, 170–185, (1994); Jasper, J. J. J Phys Chem Ref Data 1, 841–1009 (1972).

  6. Presence of certain deposits at the encircled zone

  7. Increase in fibre surface roughness with around 5 ridges at the marked area

  8. Increase in the number of ridges (around 8) at the encircled part of the SEM micrographs

References

  1. Bediako, J.K., Sarkar, A.K., Lin, S., Zhao, Y., Song, M., Choi, J., Cho, C., Yun, Y.: Characterization of the residual biochemical components of sequentially extracted banana peel biomasses and their environmental remediation applications. Waste Manage. 89, 141–143 (2019)

    Article  CAS  Google Scholar 

  2. Guerrero, A.B., Aguado, P.L., Sánchez, J., Curt, M.D.: GIS-Based Assessment of Banana Residual Biomass Potential for Ethanol Production and Power Generation: A Case Study. Waste and Biomass Valorization 7(2), 405–415 (2016). https://doi.org/10.1007/s12649-015-9455-3

    Article  CAS  Google Scholar 

  3. Manohar, K.: Experimentally Determined Apparent Thermal Conductivity of Banana Fibre, International Journal of Innovative Research in Science, Engineering and Technology, 5(8), 14317–14323 (2016), https://doi.org/10.15680/ijirset.2016.0508003

  4. Shon, C.S., Mukashev, T., Lee, D., Zhang, D and Kim, J.R.: Can common reed fiber become an effective construction material? physical, mechanical, and thermal properties of mortar mixture containing common reed fiber, Sustainability, 11(3), (2019), https://doi.org/10.3390/su11030903

  5. Asim, M., Uddin, G.M., Jamshaid, H., Raza, A., Tahir, Z.R., Hussain, U., Satti, S.N., Hayat, N., Arafat, S.M.: Comparative experimental investigation of natural fibers reinforced light weight concrete as thermally efficient building materials. J Build Eng 31, 101411 (2020). https://doi.org/10.1016/j.jobe.2020.101411

    Article  Google Scholar 

  6. Hamdaoui, O., Limam, O., Ibos, L., Mazioud, A.: Thermal and mechanical properties of hardened cement paste reinforced with Posidonia-Oceanica natural fibers. Constr Build Mater 269, 1–39 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121339

    Article  Google Scholar 

  7. Khedari, J., Watsanasathaporn and Hirunlabh, J.: Development of fibre-based soil-cement block with low thermal conductivity. Cement Concrete Composite 27(1), 111–116 (2005). https://doi.org/10.1016/j.cemconcomp.2004.02.0421

    Article  CAS  Google Scholar 

  8. Lertwattanaruk, P., Suntijitto, A.: Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Construction Building Materials 94, 664–669 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.154

    Article  CAS  Google Scholar 

  9. Mukhopadhyay, S., Bhattacharjee, B.: Influence of fibre dispersion on compression strength of banana fibres reinforced concrete. J. Ind. Text. 45(5), 957–964 (2016). https://doi.org/10.1177/1528083714545394

    Article  CAS  Google Scholar 

  10. Claramunt, J., Ardanuy, M., Hortal, J.A.C., Tolêdo Filho, R.D.: The hornification of vegetable fibers to improve the durability of cement mortar composites. Cement Concr. Compos. 33(5), 586–595 (2011)

    Article  CAS  Google Scholar 

  11. Coconut Fibre as Enhancement of Concrete: Yalley, P.P., and Kwan, A S K. J Eng Technol 2, 54–73 (2012)

    Google Scholar 

  12. Pereira, T.G.T., Silva, D.W., Eugênio, T.M.C., Scatolino, M.V., Terra, I.C., Fonseca, C.S., Bufalino, L., Mendes, R.F., Mendes, L.M.: Coconut fibers and quartzite wastes for fiber-cement production by extrusion. Materials Today Proceedings 31, S309–S314 (2019)

    Article  Google Scholar 

  13. de Azevedo, A.R.G., Marvila, M.T., Maria, L.P., Antunes, E.C.R., Fediuk, R.: Technological perspective for use the natural pineapple fiber in mortar to repair structures. Waste Biomass Valoriz 129, 5131–45 (2021)

    Article  Google Scholar 

  14. Thomas, S., Paul, S.A., Pothan, L.A., Deepa, B.: Cellulose fibers: bio- and nano-polymer composites. Cellulose Fibers (2011). https://doi.org/10.1007/978-3-642-17370-7

    Article  Google Scholar 

  15. Ramakrishna, G., Sundararajan, T.: The strength of mortar studies on the durability of natural fibres and the effect of corroded fibres on the strength of mortar. Cement Concrete Compos (2005). https://doi.org/10.1016/j.cemconcomp.2004.09.008

    Article  Google Scholar 

  16. Mahir, F I., Keya, K N., Sarker, B., Nahiun, K M and Khan, R A. (2019) A brief review on natural fiber used as a replacement of synthetic fiber in polymer composites. Materials Engineering Research 1(2): 88–99. https://doi.org/10.2502/mer.2019.02.007

  17. Pereira, M.V., Fujiyama, R., Darwish, F., Alves, G.T., Janeiro, R.D.: On the Strengthening of Cement Mortar by Natural Fibers 18(1), 177–183 (2015)

    Google Scholar 

  18. Kesikidou, F., and Stefanidou, M.: Natural fiber-reinforced mortars, Journal of Building Engineering, 100786, (2019), https://doi.org/10.1016/j.jobe.2019.100786

  19. Van de Weyenberg, I., Truong, T.C., Vangrimde, B., Verpoest, I.: Improving the Properties of UD Flax Fibre Reinforced Composites by Applying an Alkaline Fibre Treatment. Compos. A Appl. Sci. Manuf. 37(9), 1368–1376 (2006). https://doi.org/10.1016/j.compositesa.2005.08.016

    Article  CAS  Google Scholar 

  20. Saha, P., Chowdhury, S., Roy, D., Adhikari, B., Kim, J.K., Thomas, S.: A Brief Review on the Chemical 644 Modifications of Lignocellulosic Fibers for Durable Engineering Composites. Polym. Bull. 73(2), 587–620 (2016). https://doi.org/10.1007/s00289-015-1489

    Article  CAS  Google Scholar 

  21. ARKEMA.: Sodium Hydroxide Saftey Sheet, November, 1–6, (2014)

  22. Cao, Y., Chan, F., Chi, Y H and Xiao, H.: Characterization of Flax Fibres Modified by Alkaline, Enzyme, And Steam-Heat Treatments’, Bioresources, 7.3 (2012)

  23. Fiore, V., Scalici, T., Nicoletti, F., Vitale, G., Prestipino, M., and Valenza, A.: A New Eco-Friendly Chemical Treatment of Natural Fibres: Effect of Sodium Bicarbonate on Properties of Sisal Fibre and Its Epoxy Composites, Composites Part B: Engineering, 85 (2016)

  24. Soburrun, V., Ramasawmy, H.: Effective Treatment of Musa Acuminata Fibre 652 Using Wood Ash Solution to Produce Bio-Composite with Enhanced Mechanical Properties. Waste and Biomass Valorization (2021). https://doi.org/10.1007/s12649-021-01524-9

    Article  Google Scholar 

  25. Akinyele, J.O., Adekunle, A.A., Ogundaini, O.: The Effect of Partial Replacement of Cement with Bone Ash and Wood Ash in Concrere. Int. J. Eng. 2, 199–204 (2016)

    Google Scholar 

  26. Etiégni, L., Campbell, A.G.: Physical and chemical characteristics of wood ash. BioResources 37(2), 173–178 (1991)

    Article  Google Scholar 

  27. Indira, K.N., Grohens, Y., Baley, C., Thomas, S., Joseph, K., Pothen, L.A.: Adhesion and Wettability Characteristics of Chemically Modified Banana Fibre for Composite Manufacturing. J. Adhes. Sci. Technol. 25(13), 1515–1538 (2011)

    Article  CAS  Google Scholar 

  28. Kesavraman, S.: Studies on Metakaolin Based Banana Fibre Reinforced Concrete. International Journal of Civil Engineering and Technology 8(1), 532–543 (2017)

    Google Scholar 

  29. Sango, T., Yona, A.M.C., Duchatel, L., Marin, A., Kor N.M., Joly, N and Lefebvre, J.M.: Step–wise multi-scale deconstruction of banana pseudo–stem (Musa acuminata) biomass and morpho–mechanical characterization of extracted long fibres for sustainable applications, Industrial Crops and Products, 122, 657, (2018), https://doi.org/10.1016/j.indcrop.2018.06.050

  30. Sia, C.V., Fernando, L., Joseph, A and Chua, S.N.: Modified Weibull analysis on banana fiber strength prediction, Journal of Mechanical Engineering and Sciences, 12(1), 3461–3471 (2018), https://doi.org/10.15282/jmes.12.1.2018.13.0307

  31. Vardhini, K.J.V., Murugan, R., Rathinamoorthy, R.: Effect of Alkali Treatment on Physical Properties of Banana Fibre’. Indian J. Fibre Text. Res. 44(4), 459–465 (2019)

    CAS  Google Scholar 

  32. Ramadevi, P., Sampathkumar, D., Srinivasa, C V and Bennehalli, B.: Effect of Alkali Treatment on Water Absorption of Single Cellulosic Abaca Fiber, BioResources, 7(3), 3515–24 (2012) https://doi.org/10.15376/biores.7.3.3515-3524

  33. Ibrahim, N.A., Azraaie, N., Abidin, N.A.M.Z., Razali, N.A.M., Aziz, F.A., Zakaria, S.: Preparation andCharacterization of Alpha Cellulose of Pineapple (Ananas Comosus) Leaf Fibres (PALF). Advanced Materials Research 895, 147–150 (2014)

    Article  Google Scholar 

  34. Hemalatha, M., Khed, V C., Harsha, G S and Adamu, M.: Feasibility study on compressive strength of roller compacted concrete pavement using nano silica and natural fibre, Int. Conf. Phys. Energy 2021, vol. 020006 (2022)

  35. Singh, V.K., Mukhopadhyay, S.: Banana fibre-based structures for acoustic insulation and absorption. J. Ind. Text. 51(9), 1355–1375 (2022). https://doi.org/10.1177/1528083720901823

    Article  Google Scholar 

  36. Newman, J, and Choo, B S.: Advanced-Concrete-Technology-2, Advanced Concrete Technology, 2006

  37. Rashid, M M., Samad, S A., Gafur, M A and Sarwaruddin Chowdhury, A M.: 685 Study of Different Chemical Treatments for the Suitability of Banana (Musa Oranta) Fiber in Composite Materials, International Journal of Scientific and Engineering Research, 6(4), 1870–75 (2015) https://doi.org/10.14299/ijser.2015.04.006

  38. Oliveira, F.R., Erkens, L., Fangueiro, R., Souto, A.P.: Surface Modification of Banana Fibers by DBD Plasma Treatment. Plasma Chem. Plasma Process. 32(2), 259–273 (2012). https://doi.org/10.1007/s11090-012-9354-3

    Article  CAS  Google Scholar 

  39. Cordeiro, N., Oliveira, L., Faria, H., Belgacem, M N and Moura, J C V P.: Surface Modification of Banana-Based Lignocellulose Fibres, (2006)

  40. Atmakuri, A., Janusas, G., Siddabathula, M., and Palevicius, A.: Wettability and Moisture Analysis on Natural Fiber Reinforced Epoxy Resin Hybrid Composites, 15th International Conference Mechatronic Systems and Materials, (2020)

  41. Sakare, P., Bharimalla, A.K., Lad, J.D., Patil, P.G.: Development of Greaseproof Paper from Banana Pseudostem Fiber for Packaging of Butter. Journal of Natural Fibers 18(12), 1974–1982 (2021). https://doi.org/10.1080/15440478.2019.1710652

    Article  CAS  Google Scholar 

  42. Faradilla, Fitri, R H., Lee, G., Arns, J Y., Roberts, J., Martens, P., Stenzel, M H.: Characteristics of a Free-Standing Film from Banana Pseudostem Nanocellulose Generated from TEMPO-Mediated Oxidation, Carbohydrate Polymers, 174 (2017)

  43. Yusof, N A A N., and Yusoff, M.: Investigation of Chemical Analysis and Physical Properties of Bio-Polymer Waste Banana Peel Fibre Composite, IOP Conference Series: Earth and Environmental Science, 596(1), (2020), https://doi.org/10.1088/1755-1315/596/1/012042

  44. Fuentes, C.A., Tran, L.Q.N., Dupont-Gillain, C., Van Vuure, A.W., Verpoest, I.: Interfaces in Natural Fibre Composites: Effect of Surface Energy and Physical Adhesion. J. Biobased Mater. Bioenergy 6(4), 456–462 (2012)

    Article  CAS  Google Scholar 

  45. Guo, L., Wong, P.L., Guo, F.: Correlation of Contact Angle Hysteresis and Hydrodynamic Lubrication. Tribol. Lett. 58(3), 1–9 (2015). https://doi.org/10.1007/s11249-015-0518-1

    Article  CAS  Google Scholar 

  46. Biresaw, G., and Carriere, C J.: Correlation between Mechanical Adhesion and Interfacial Properties of Starch/Biodegradable Polyester Blends’, Journal of Polymer Science, Part B: Polymer Physics, 39.9 (2001)

  47. Pease, D C.: The significance of the contact angle in relation to the solid surface, 9–25 (1944)

  48. Bakri., Bin, M K., Jayamani, E., and Hamdan, S.: Processing and Characterization of Banana Fiber/Epoxy Composites: Effect of Alkaline Treatment, Materials Today: Proceedings, 4.2 (2017), 2871–78

  49. Jairo, J., Florez, O.: The Influence of Alkali Treatment on Banana Fibre’ s Mechanical Properties Influencia Del Tratamiento Alcalino Sobre las Propiedades Mecánicas de La Fibra’. Ingenieria e Investigacion 32(1), 83–87 (2012)

    Article  Google Scholar 

  50. Parre, A., Karthikeyan, B., Balaji, A and Udhayasankar, R.: Investigation 718 of Chemical, Thermal and Morphological Properties of Untreated and NaOH Treated Banana Fiber, Materials Today: Proceedings, 22. July (2020), 347–52, https://doi.org/10.1016/j.matpr.2019.06.655

  51. Kumar, R., Choudhary, V., Mishra, S., Varma, I.: Banana Fiber-Reinforced Biodegradable Soy ProteinComposites. Front. Chem. China 3(3), 243–250 (2008). https://doi.org/10.1007/s11458-008-0069-1

    Article  Google Scholar 

  52. George, J., Ivens, J and Verpoest, I.: Surface Modification to Improve the Impact Performance of Natural Fibre Composites, Proceedings of ICCM12, 1999

  53. Kabir, M. M.,Wang, H., Lau, K T and Cardona, F.: Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview, Composites Part B: Engineering43.7.2015, 2883–92 (2012). https://doi.org/10.1016/j.compositesb.2012.04.053

  54. Lindstrom, T.: The colloidal behaviour of kraft lignin. Colloid Polym. Sci. 258, 168–173 (1980)

    Article  Google Scholar 

  55. Shen, J., Fatehi, P., Soleimani, P., Ni, Y.: Lime Treatment of Prehydrolysis Liquor from the Kraft-Based Dissolving Pulp Production Process. Ind. Eng. Chem. Res. 51, 662–667 (2012)

    Article  Google Scholar 

  56. Kim, H.S.: Lime pretreatment and enzymatic hydrolysis of corn stover, (2004)

  57. Zin, M. H., Abdan, K., Mazlan, N., Zainudin, E S and Liew, K E.: The Effects of Alkali Treatment on the Mechanical and Chemical Properties of Pineapple Leaf Fibres (PALF) and Adhesion to Epoxy Resin, IOP Conference Series: Materials Science and Engineering, 368(1) (2018) https://doi.org/10.1088/1757- 899X/368/1/012035

  58. Vardhini, K. J. V., Murugan, R., Selvi, C Tand Surjit, R.: Optimisation of Alkali Treatment of Banana Fibres on Lignin Removal, Indian Journal of Fibre and Textile Research, 41(2), 156–60 (2016)

  59. Begum, H A., Tanni, R A and Abul S.: Analysis of Water Absorption of Different Natural Fibers, 152–60, (2021)

  60. Benítez, A.N., Monzón, M.D., Angulo, I., Ortega, Z., Hernández, P.M., Marrero, M.D.: Treatment of banana fiber for use in the reinforcement of polymeric matrices, measurement. J Int Meas Confed 46(3), 1065–1073 (2013)

    Article  Google Scholar 

  61. Hofmeister, A.M., Cynn, H., Burnley, P.C., Meade, C.: Vibrational spectra of dense, hydrous magnesium silicates at high pressure: importance of the hydrogen bond angle. Am Mineral 84(3), 454–464 (1999)

    Article  ADS  CAS  Google Scholar 

  62. Gutiérrez, A., José, C., Río, D., Martínez, A.T.: Microbial and enzymatic control of pitch in the pulp and paper industry’. Appl Microbiol Biotechnol 82(6), 1005–1018 (2009). https://doi.org/10.1007/s00253-009-1905

    Article  PubMed  Google Scholar 

  63. Popescu, C., M., Popescu, M C and Vasile, C.: Structural analysis of photodegraded lime wood by means of ft-ir and 2d ir correlation spectroscopy. Int J Biol Macromol 48(4), 667–675 (2011). https://doi.org/10.1016/j.ijbiomac.2011.02.009

    Article  CAS  PubMed  Google Scholar 

  64. Mtibe, A., Linganiso, L.Z., Mathew, A., Oksman, K., John, M.J., Anandjiwala, R.D.: A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118, 1–8 (2015). https://doi.org/10.1016/j.carbpol.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  65. Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C.: Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohyd. Polym. 81(1), 83–92 (2010). https://doi.org/10.1016/j.carbpol.2010.01.059

    Article  CAS  Google Scholar 

  66. Saikia, B.J., Parthasarathy, G.: Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya. J Modern Phys, Northeastern India (2010). https://doi.org/10.4236/jmp.2010.14031

    Book  Google Scholar 

  67. Wang, F., Shao, J., Keer, L.M., Li, L., Zhang, J.: The effect of elementary fibre variability on bamboo fibre strength. Mater Des (2015). https://doi.org/10.1016/j.matdes.2015.03.019

    Article  Google Scholar 

  68. Osorio, J.C.M., Baracaldo, R.R., Florez, J.J.O.: The influence of alkali treatment on banana fibre’ s mechanical properties. Eng Res 32(1), 83–87 (2012)

    CAS  Google Scholar 

  69. Spruijt, E., Van Den Berg, S.A., Cohen Stuart, M.A., Gucht, J.V.D.: Direct measurement of the strength of single ionic bonds between hydrated charges. ACS Nano 6(6), 5297–5303 (2012). https://doi.org/10.1021/nn301097y

    Article  CAS  PubMed  Google Scholar 

  70. Jayaprabha, J.S., Brahmakumar, M., Manilal, V.B.: Banana pseudostem characterization and its fiberproperty evaluation on physical and bioextraction. Journal of Natural Fibers 8(3), 149–160 (2011)

    Article  CAS  Google Scholar 

  71. Inoue, M., Normotoi, M., Tanahashi, M., Rowell, R.: Steam or heat fixation of compressed wood. Wood Fiber Sci. 25(3), 224–235 (1993)

    CAS  Google Scholar 

  72. Mansor, A.M., Lim, J.S., Ani, F.N., Hashim, H., Ho, W.S.: Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chem Eng Trans (2019). https://doi.org/10.3303/CET1972014

    Article  Google Scholar 

  73. Strakowska, J., Błaszczyk, L., Chełkowski, J.: The significance of cellulolytic enzymes produced by trichoderma in opportunistic lifestyle of this fungus. J. Basic Microbiol. (2014). https://doi.org/10.1002/jobm.201300821

    Article  PubMed  Google Scholar 

  74. Kim, S., Holtzapple, M.T.: Delignification kinetics of corn stover in lime pretreatment. Biores. Technol. 97(5), 778–785 (2006). https://doi.org/10.1016/j.biortech.2005.04.002

    Article  CAS  Google Scholar 

  75. Kim, J., Park, M.: Visualization of concrete slump flow using the kinect sensor. Sensors 18(771), 1–16 (2018)

    Google Scholar 

  76. Koehler, E.P.: Using a Mixing Truck 110(1), 55–66 (2005)

    Google Scholar 

  77. Hughes, B.P., Fattuhi, N.I.: The workability of steel-fibre-reinforced concrete. Mag. Concr. Res. 28(96), 157–161 (1976)

    Article  Google Scholar 

  78. Marar, K., Eren, Ö.: Effect of cement content and water / cement ratio 785 on fresh concrete properties without admixtures. Int J Phys Sci 6(24), 5752–5765 (2011). https://doi.org/10.5897/IJPS11.188

    Article  CAS  Google Scholar 

  79. Silva, F., Mobasher, B., Filho, R.D.T.: Cracking mechanisms in durable sisal fiber reinforced cement composites. Cement Concrete Composites 31(10), 721–730 (2009). https://doi.org/10.1016/j.cemconcomp.2009.07.004

    Article  CAS  Google Scholar 

  80. Tolédo, F.R.D., Scrivener, K., England, G.L., Ghavami, K.: Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites. Cement Concrete Composites 22, 127–143 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to extend their gratefulness towards the technical staff at the Mechanical and Production Engineering, Concrete Technology, Chemical Engineering, Chemistry, Centre of Biomaterials and Biomedical Research departments as well as to the Faculty of Agriculture for their useful contribution and support.

Funding

Higher Education Commission, Mauritius funding scheme.

Author information

Authors and Affiliations

Authors

Contributions

The whole manuscript is the sole work of the authors.

Corresponding author

Correspondence to Raghoo Yashy.

Ethics declarations

Conflict of interest

Nil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashy, R., Hareenanden, R., Mahendra, G. et al. Enhancing banana fibre to concrete adhesion through an optimised wood ash treatment process. Waste Biomass Valor 15, 665–685 (2024). https://doi.org/10.1007/s12649-023-02172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02172-x

Keywords

Navigation