Skip to main content

Advertisement

Log in

Strategic Planning of Biorefineries for the Use of Residual Biomass for the Benefit of Regions with Low Human Development Index

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The scarcity of fuels, their feedstocks as well as the environmental impact and the climate change caused by them are issues that have gained strength in recent years. To deal with this situation, biomass has been incorporated as a renewable resource that gives rise to the production of high value-added products in biorefineries such as special chemicals, biofuels and electricity. In this context, the planning of a distributed scheme of biorefineries able to involve the selection of raw materials, cultivation and harvesting sites, processing routes, processing sites and the selection of the distribution of the different products to the markets is needed. Even though the economic and environmental impacts have been widely studied, the social impact has been neglected in the strategic planning of bioresource supply chains. Therefore, this work incorporates a new metric for the social impact into the optimization of supply chains for different biofuels and products. Moreover, one of the major aims of the social objective is to distribute equitably the benefits in the cultivation sites considered within the supply chain. To prove the methodology, a case study of Mexico is considered. Results show that considering economic and social benefits as objectives it is possible to obtain solutions able to benefit from 25 up to 100% of the states of the country, by presenting a slight increase in the value of their human development index.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files, however, they are available from the corresponding author on reasonable request.

Abbreviations

\({\alpha }_{p,m,r}^{factor}\) :

Conversion factors to product p from m by r

\({A}_{m,h}\) :

Raw material storage in cultivation sites

C:

Markets

c :

Market

\({C}_{m,f}^{fixed alm}\) :

Fixed cost for storage of raw material m in biorefineries F ($us)

\({C}_{m,h}^{fixed alm}\) :

Fixed cost for storage of raw material m in cultivation sites H ($us)

\({C}_{p,c}^{fixed alm}\) :

Fixed cost for storage of products p in markets C ($us)

\({C}_{p,f}^{fixed alm}\) :

Fixed cost for storage of products p in biorefineries F ($us)

\({C}_{m,p,r,f,t}^{process}\) :

Processing cost of raw material m to product p through route r in biorefineries F ($us per ton)

\({C}_{m,h,t}^{produced}\) :

Cost of raw material m produced in cultivation sites H at end of period T ($us per ton)

\({C}_{p,c,t}^{product}\) :

Cost of product p in market c at end of period T ($us per ton)

\({C}_{m,h,f,t}^{transp}\) :

Transport cost of raw material m from cultivation sites H to biorefineries F ($us per ton)

\({C}_{p,f,c,t}^{transp}\) :

Transport cost of product p from biorefineries F to market C ($us per ton)

\({C}_{m,f,t}^{variable alm}\) :

Variable cost for storage of raw material in biorefineries ($us per ton)

\({C}_{m,h,t}^{variable alm}\) :

Variable cost for storage of raw material in cultivation sites ($us per ton)

\({C}_{p,c,t}^{variable alm}\) :

Variable cost for storage of products in markets ($us per ton)

\({C}_{p,f,t}^{variable alm}\) :

Variable cost for storage of products in biorefineries ($us per ton)

F:

Biorefineries

f :

Biorefinery

H:

Cultivation sites

h :

Cultivation site

HDI:

Human development index

M:

Raw materials

m :

Raw material

\({M}_{m,h,t}^{max}\) :

Maximum raw material produced in cultivation site h at end of period t

\({M}_{m,f}^{Max alm}\) :

Maximum storage of raw material m in biorefineries f (ton per year)

\({M}_{m,h}^{\mathrm{Max}alm}\) :

Maximum storage of raw material m in cultivation site h (ton per year)

\({M}_{m,p,r,f}^{max used}\) :

Maximum processing of raw material m to product p through route r in biorefineries f (ton per year)

\({M}_{m,f}^{Min alm}\) :

Minimum storage of raw material m in biorefineries f (ton per year)

\({M}_{m,h}^{\mathrm{Min}alm}\) :

Minimum storage of raw material m in cultivation sites h (ton per year)

\({M}_{m,p,r,f}^{min used}\) :

Minimum processing of raw material m to product p through route r in biorefineries f (ton per year)

P:

Products

p :

Product

\({P}_{p,c}^{Max alm}\) :

Maximum storage of product p in market c (ton per year)

\({P}_{p,f}^{Max alm}\) :

Maximum storage of product p in biorefineries f (ton per year)

\({P}_{p,c,t}^{Max demand}\) :

Maximum demand of product p in market c at end of period t (ton per year

\({P}_{p,c}^{Min alm}\) :

Minimum storage of product p in market c (ton per year)

\({P}_{p,f}^{Min alm}\) :

Minimum storage of product p in biorefineries f (ton per year)

R:

Bioprocesses

r :

Bioprocess

T:

Periods of times

t :

Period

\({U}_{m,h,f}^{\mathrm{max}transp}\) :

Maximum transport of raw material m from home h to biorefineries f (ton per year)

\({U}_{p,f,c}^{\mathrm{max}transp}\) :

Maximum transport of product p from biorefineries f to market c (ton per year)

\({U}_{m,h,f}^{\mathrm{min}transp}\) :

Minimum transport of raw material m from cultivation sites h to biorefineries f (ton per year)

\({U}_{p,f,c}^{\mathrm{min}transp}\) :

Minimum transport of product p from biorefineries f to market c (ton per year)

\({V}_{m,f,t}^{price}\) :

Determine the price to sell raw material m to processing plants f

\({C}_{m,f}^{total alm}\) :

Total cost of storage of raw material m in biorefineries f

\({C}_{m,h}^{total alm}\) :

Total cost of storage of raw material m in cultivation sites h

\({C}_{p,c}^{total alm}\) :

Total cost of storage of product p in market c

\({C}_{p,f}^{total alm}\) :

Total cost of storage of product p in biorefineries f

\({M}_{m,f,t}^{alm}\) :

Stored raw material m in biorefineries f at end of period t

\({M}_{m,h,t}^{alm}\) :

Stored raw material m in cultivation sites h at end of period t

\({M}_{m,f}^{inicial alm}\) :

Initial raw material m storage in biorefineries f

\({M}_{m,h}^{inicial alm}\) :

Initial raw material m storage in cultivation sites h

\({M}_{m,h,f,t}^{in distr}\) :

Distributed raw material m from cultivation sites h to biorefineries f (in)

\({M}_{m,h,t}^{produced}\) :

Production of raw material m in cultivation sites h at end of period t

\({M}_{m,h,f,t}^{out distr}\) :

Distributed raw material m from cultivation sites h to biorefineries f (out)

\({M}_{m,p,r,f,t}^{out process}\) :

Raw material m from biorefineries f to processing route r (out)

\({P}_{p,c,t}^{alm}\) :

Stored product p in market c at end of period t

\({P}_{p,f,t}^{alm}\) :

Stored product p in biorefineries f at end of period t

\({P}_{p,f,c,t}^{in distr}\) :

Distributed product p from biorefineries f to market c (in)

\({P}_{m,p,r,f,t}^{in produced}\) :

Produced product p from processing route r to biorefineries f (in)

\({P}_{p,c}^{inicial alm}\) :

Initial product p storage in markets c

\({P}_{p,f}^{inicial alm}\) :

Initial product p storage in biorefineries f

\({P}_{p,f,c,t}^{out distr}\) :

Distributed product p from biorefineries f to market c (out)

\({V}_{p,c,t}^{out sale}\) :

Sold product p sale in market c (out)

\({y}_{m,h}^{existence}\) :

Define the existence of a cultivation site h

\({y}_{m,f}^{Necessary alm}\) :

Define if it is necessary the storage of raw material m in biorefineries f

\({y}_{m,h}^{Necessary alm}\) :

Define if it is necessary the storage of raw material m in cultivation sites h

\({y}_{p,c}^{Necessary alm}\) :

Define if it is necessary the storage of product p in market c

\({y}_{p,f}^{Necessary alm}\) :

Define if it is necessary the storage of product p in biorefineries f

\({y}_{m,f,0}^{Necessary alm}\) :

Define if it is necessary the storage of raw material m in biorefineries f at time zero

\({y}_{m,h,0}^{Necessary alm}\) :

Define if it is necessary the storage of raw material m in cultivation sites h at time zero

\({y}_{p,c,0}^{Necessary alm}\) :

Define if it is necessary the storage of product p in market c at time zero

\({y}_{p,f,0}^{Necessary alm}\) :

Define if it is necessary the storage of product p in biorefineries f at time zero

\({y}_{m,f,t}^{Necessary alm}\) :

Define if it is necessary the storage of raw material m in biorefineries f at time t

\({y}_{m,h,t}^{Necessary alm}\) :

Define if it is necessary the storage of raw material m in cultivation sites h at time t

\({y}_{p,c,t}^{Necessary alm}\) :

Define if it is necessary the storage of product p in market c at time t

\({y}_{p,f,t}^{Necessary alm}\) :

Define if it is necessary the storage of product p in biorefineries f at time t

\({y}_{m,h,f,t}^{Necessary trans}\) :

Define if it is necessary the transport of raw material m from cultivation sites h to biorefineries f

\({y}_{p,f,c,t}^{Necessary trans}\) :

Define if it is necessary the transport of product p from biorefineries f to market c

\({y}_{m,p,r,f,t}^{Necessary process}\) :

Define if it is necessary the processing in biorefineries f

References

  1. Keles, R.: The quality of life and the environment. Proc. Soc. Behav. Sci. 35, 23–32 (2012). https://doi.org/10.1016/j.sbspro.2012.02.059

    Article  Google Scholar 

  2. Lozano-García, D., Santibañez-Aguilar, J., Lozano, F., Flores-Tlacuahuac, A.: GIS-based modeling of residual biomass availability for energy and production in Mexico. Renew. Sustain. Energy Rev. 120, 109610 (2020). https://doi.org/10.1016/j.rser.2019.109610

    Article  Google Scholar 

  3. Kirti, N., Tekade, S., Tagade, A., Sawarkar, A.N.: Pyrolysis of pigeon pea (Cajanus cajan) stalk: kinetics and thermodynamic analysis of degradation stages via isoconversional and master plot methods. Bioresource Technol. 347, 126440 (2022). https://doi.org/10.1016/j.biortech.2021.126440

    Article  Google Scholar 

  4. Tagade, A., Kirti, N., Sawarkar, A.N.: Pyrolysis of agricultural crop residues: an overview of researches by indian scientific community. Bioresource Technol. Rep. 15, 100761 (2021). https://doi.org/10.1016/j.biteb.2021.100761

    Article  Google Scholar 

  5. Saravanan, A., Senthil-Kumar, P., Nurul-Syahirah-Mat-Aron., Jeevanantham, S., Karishma, S., Yaashikaa, P., Wayne-Chew, K., Loke, P.: A review on bioconversion processes for hydrogen production from agro-industrial residues. Int. J. Hydrog. Energy. 47(88), 37302–37320 (2022). https://doi.org/10.1016/j.ijhydene.2021.08.055

    Article  Google Scholar 

  6. Singh, S., Patil, T., Tekade, S., Gawande, M., Sawarkar, A.N.: Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Sci. Total Environ. 783, 147004 (2021). https://doi.org/10.1016/j.scitotenv.2021.147004

    Article  Google Scholar 

  7. Kumar, A., Samadder, S.: Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: a review. Energy. 197, 117253 (2020). https://doi.org/10.1016/j.energy.2020.117253

    Article  Google Scholar 

  8. Munsik, P., Namgyu, K., Seunghwan, J., Tae-Young, J., Donghee, P.: Optimization and comparison of methane production and residual characteristics in mesophilic anaerobic digestion of sewage sludge by hydrothermal treatment. Chemosphere. 264, 128516 (2021). https://doi.org/10.1016/j.chemosphere.2020.128516

    Article  Google Scholar 

  9. Saghaei, M., Ghaderi, H., Soleimani, H.: Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand. Energy. 197, 117165 (2020). https://doi.org/10.1016/j.energy.2020.117165

    Article  Google Scholar 

  10. Roni, M.S., Thompson, D.N., Hartley, D.S.: Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery. Appl. Energy. 254, 113660 (2019). https://doi.org/10.1016/j.apenergy.2019.113660

    Article  Google Scholar 

  11. Ulonska, K., König, A., Klatt, M., Mitsos, A., Viell, J.: Optimization of multiproduct biorefinery processes under consideration of biomass supply chain management and market developments. Ind. Eng. Chem. Res. 57(20), 6980–6991 (2018). https://doi.org/10.1021/acs.iecr.8b00245

    Article  Google Scholar 

  12. Espinoza-Vázquez, Y., Gómez-Castro, F., Ponce-Ortega, J.: Optimization of the supply chain for the production of biomass-based fuels and high-added value products in Mexico. Computers & Chemical Engineering. 145, 101781 (2021). https://doi.org/10.1016/j.compchemeng.2020.107181

    Article  Google Scholar 

  13. Santibañez-Aguilar, J., Gonzalez-Campos, J., Ponce-Ortega, J., Serna-Gonzales, M., El-Halwagi, M.: Optimal planning and site selection for distributed multiproduct biorefineries involving economic, environmental and social objectives. J. Clean. Prod. 65, 270–294 (2014). https://doi.org/10.1016/j.jclepro.2013.08.004

    Article  Google Scholar 

  14. Yue, D., Slivinsky, M., Sumpter, J., You, F.: Sustainable design and operation of cellulosic bioelectricity supply chain networks with life cycle economic, environmental, and social optimization. Industrial & Engineering Chemistry Research. 53(10), 4008–4029 (2014). https://doi.org/10.1021/ie403882v

    Article  Google Scholar 

  15. Miret, C., Chazara, P., Montastruc, L., Negny, S., Domenech, S.: Design of bioethanol green supply chain: comparison between first and second generation biomass concerning economic, environmental and social criteria. Computers & Chemical Engineering. 85(2), 16–35 (2016). https://doi.org/10.1016/j.compchemeng.2015.10.008

    Article  Google Scholar 

  16. Martinkus, N., Latta, G., Rijkhoff, S., Mueller, D., Hoard, S., Sasatani, D., Pierobon, F., Wolcott, M.: A multi-criteria decision support tool for biorefinery siting: using economic, environmental, and social metrics for a refined siting analysis. Biomass and Bioenergy. 128, 105330 (2019). https://doi.org/10.1016/j.biombioe.2019.105330

    Article  Google Scholar 

  17. Contreras-Zarazúa, G., Martin-Martin, M., Ponce-Ortega, J., Segovia-Hernandez, J.: Sustainable design of an optimal supply chain for furfural production from agricultural wastes. Industrial & Engineering Chemistry Research. 60, 14495–14510 (2021). https://doi.org/10.1021/acs.iecr.1c01847

    Article  Google Scholar 

  18. Yee-Ting, N., Nai-Peng, T.: Human Development Index as a predictor of life satisfaction. J. Popul. Social Stud. 27, 70–86 (2019). https://doi.org/10.25133/JPSSv27n1.005

    Article  Google Scholar 

  19. Ximenes, E., Farinas, C., Badino, A., Ladisch, M.: Moving from residual lignocellulosic biomass into high-value products: outcomes from a long-term international cooperation. Biofuels Bioprod. Biorefining. 15, 563–573 (2020). https://doi.org/10.1002/bbb.2179

    Article  Google Scholar 

  20. Azelee, N., Manas, N., Dailin, D., Ramli, A., Shaarani, S.: Biological treatment of agro-industrial waste. Valorisation of agro-industrial residues. Volume I: Biological Approaches. 59–79 (2020). https://doi.org/10.1007/978-3-030-39137-9_3

  21. Singh, P., Kumar-Singh, R., Gokul, P.V., Hasan, S., Sawarkar, A.N.: Thermal degradation and pyrolysis kinetics of two Indian rice husk varieties using thermogravimetric analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. (2020). https://doi.org/10.1080/15567036.2020.1736215

  22. Munguía-López, A., Zavala, V., Santibañez-Aguilar, J., Ponce-Ortega, J.: Optimization of municipal solid waste management using a coordinated framework. Waste Manage. 115, 15–24 (2020). https://doi.org/10.1016/j.wasman.2020.07.006

    Article  Google Scholar 

  23. Liu, C., Wu, S.: From biomass waste to biofuels and biomaterial building blocks. Renew. Energy. 96, 1056–1062 (2016). https://doi.org/10.1016/j.renene.2015.12.059

    Article  Google Scholar 

  24. Rodrigues, L., Silva dos Santos, I., Silva dos Santos, T., Mambeli, R., Tiago, G.: Energy and economic evaluation of MSW incineration and gasification in Brazil. Renew. Energy. 188, 933–944 (2022). https://doi.org/10.1016/j.renene.2022.02.083

    Article  Google Scholar 

  25. Athanasoulia, E., Melidis, P., Aivasidis, A.: Optimization of biogas production from waste activated sludge through serial digestion. Renew. Energy. 47, 147–151 (2012). https://doi.org/10.1016/j.renene.2012.04.038

    Article  Google Scholar 

  26. Osorio, F., Torres, J.: Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew. Energy. 34, 2164–2171 (2009). https://doi.org/10.1016/j.renene.2009.02.023

    Article  Google Scholar 

  27. Lorenzo-Acosta, Y., Obaya-Abreu, M.: La digestión anaerobia. Aspectos teóricos. Parte I. ICIDCA. Sobre los Derivados de la Caña de Azúcar. 39, 35–48 (2005)

  28. Pressley, P., Aziz, T., DeCarolis, J., Barlaz, M., He, F., Li, F., Damgaard, A.: Municipal solid waste conversion to transportation fuels: a life-cycle estimation of global warming potential and energy consumption. J. Clean. Prod. 70, 145–153 (2014). https://doi.org/10.1016/j.jclepro.2014.02.041

    Article  Google Scholar 

  29. Santibañez-Aguilar, J., Lozano-García, D., Lozano, F., Flores-Tlacuahuac, A.: Sequential use of geographic information system and mathematical programming for optimal planning for energy production systems from residual biomass. Ind. Eng. Chem. Res. 58(35), 15818–15837 (2019). https://doi.org/10.1021/acs.iecr.9b00492

    Article  Google Scholar 

  30. Santibañez-Aguilar, J., González-Campos, J., Ponce-Ortega, J., Serna-González, M., El-Halwagi, M.: Optimal planning of a biomass conversion system considering economic and environmental aspects. Ind. Eng. Chem. Res. 50(14), 8558–8570 (2011). https://doi.org/10.1021/ie102195g

    Article  Google Scholar 

  31. González, J., González, L.: Biomasa: métodos de producción, potencial energético y medio ambiente. Revista I3+, Investigación, Innovación, Ingeniería. 2(2),28–44(2015). https://doi.org/10.24267/23462329.109

  32. Zhenh, X., Ting, Z., Wang, B., Chen, C.: Hydrogen and syngas production from municipal solid waste (MSW) gasification via reusing CO2. Appl. Therm. Eng. 144, 242–247 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.058

    Article  Google Scholar 

  33. Farmanbordar, S., Karimi, K., Amiri, H.: Municipal solid waste as a suitable substrate for butanol production as an advanced biofuel. Energy Convers. Manage. 157, 396–408 (2018). https://doi.org/10.1016/j.enconman.2017.12.020

    Article  Google Scholar 

  34. Lozano, F., Lozano, R.: Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production. J. Clean. Prod. 172, 4162–4169 (2017). https://doi.org/10.1016/j.jclepro.2017.01.037

    Article  Google Scholar 

  35. Castellanos, L., Matallana, L., López, L.: Análisis de estabilidad de un sistema de fermentación acetona-butanol-etanol (ABE) a partir de glucosa empleando Clostridium acetobutylicum ATCC 824. Mutis. 4(1), 15–23 (2014). https://doi.org/10.21789/22561498.906

    Article  Google Scholar 

  36. Carmona-Garcia, E., Marín-Valencia, P., Solarte-Toro, J., Moustakas, K., Cardona-Alazate, C.: Comparison of acetone–butanol–ethanol fermentation and ethanol catalytic upgrading as pathways for butanol production: a techno-economic and environmental assessment. Biofuel. 8, 1384–1399 (2021). https://doi.org/10.18331/BRJ2021.8.2.4

    Article  Google Scholar 

  37. López-Calva, L., Rodríguez-Chamussy, L., Skékely, M.: Medición del desarrollo humano en México. Estudios sobre desarrollo humano PNUD. 5–22 (2004)

  38. López-Calva, L., Rodríguez García, C., Vélez, R.: Estimación del IDH estatal en México, análisis de sensibilidad a distintas decisiones metodológicas y comparaciones internacionales.Estudio sobre Desarrollo Humano PNUD.4–12(2003)

  39. El-Halwagi, A., Rosas, C., Ponce-Ortega, J., Jiménez-Gutierrez, A., Mannan, M., El-Halwagi, M.: Multiobjective optimization of biorefineries with economic and safety objectives. AIChE J. 59, 2427–2434 (2013). https://doi.org/10.1002/aic.14030

    Article  Google Scholar 

  40. Alvarez del Castillo-Romo, A., Morales-Rodriguez, R., Román-Martínez, A.: Multiobjective optimization for the socio-eco-efficient conversion of lignocellulosic biomass to biofuels and bioproducts. Clean Technol. Environ. Policy. 20, 603–620 (2018). https://doi.org/10.1007/s10098-018-1490-x

    Article  Google Scholar 

  41. Sharifzadeh, M., Cortada-Garcia, M., Shah, N.: Supply chain network design and operation: systematic decision-making for centralized, distributed, and mobile biofuel production using mixed integer linear programming (MILP) under uncertainty. Biomass and Bioenergy. 81, 401–414 (2015). https://doi.org/10.1016/j.biombioe.2015.07.026

    Article  Google Scholar 

  42. Urbanucci, L.: Limits and potentials of mixed integer linear programming methods for optimization of polygeneration energy systems. Energy Procedia. 148, 1199–1205 (2018). https://doi.org/10.1016/j.egypro.2018.08.021

    Article  Google Scholar 

  43. Lee, J., Leyffer, S.: Mixed Integer Nonlinear Programming. Springer Science y Business Media (2018)

  44. SIAP.: Anuario estadístico de la producción agrícola. Publishing from Servicio de Información Agroalimentaria y Pesquera: (2020). https://nube.siap.gob.mx/cierreagricola/ Accessed February 2021

  45. SENER.: Atlas nacional de biomasa. Publishing from Gobierno de Mexico, Secretaríe de Energía: (2018). https://www.gob.mx/sener/articulos/atlas-nacional-de-biomasa Accessed February 2021

  46. CENACE.: Demanda sistema eléctrico nacional. Publishing from Centro Nacional de Control de Energía: (2021). https://www.cenace.gob.mx/GraficaDemanda.aspx Accessed March 2021

Download references

Acknowledgements

The authors want to thank CONACYT and CIC-UMSNH for the financial support provided.

Funding

This study as well as the research leading to these results was funded and supported by CONACYT and CIC-UMSNH.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by Juan Carlos Pulido-Ocegueda, José Ezequiel Santibañez-Aguilar and José María Ponce-Ortega. The first draft of the manuscript was written by Juan Carlos Pulido-Ocegueda and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jose Maria Ponce-Ortega.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulido-Ocegueda, J.C., Santibañez-Aguilar, J.E. & Ponce-Ortega, J.M. Strategic Planning of Biorefineries for the Use of Residual Biomass for the Benefit of Regions with Low Human Development Index. Waste Biomass Valor 14, 2825–2841 (2023). https://doi.org/10.1007/s12649-023-02069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02069-9

Keywords

Navigation