Skip to main content
Log in

Robust Quantitative Analytic for Carbohydrate Measurement in Sludge

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this article a significant improvement for the chemical analytic is presented to overcome the gap of a fast and accurate carbohydrate measurement during anaerobic digestion. The new method is an easily manageable and accurate carbohydrate analysis for solutions which are difficult to analyse, such as mixtures of substrate with anaerobic sludge. The method can be used for soluble carbohydrate measurements for particles ø \(\le \text {0.45}\,\upmu \text {m}\). Additionally, solutions with insoluble carbohydrates or larger particles were successfully hydrolysed and then measured. Hydrolysing a viscose model kitchen waste solution with a carbohydrate content in the range between 5.3 and 42.5 gL\(^{-1}\) led to complete recovery with a relative derivation of less than ± 4%. This new method is accurate, inexpensive and safe. The advantages and features are presented and offers the possibility of carbohydrate degradation monitoring during anaerobic digestion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Notes

  1. In this work the sulphuric acid concentration is presented as relative acid concentration with the unit (%) v/v. This means volume sulphuric acid in volume total solution.

Abbreviations

AS:

Anaerobic sludge

CV:

Coefficient of variation

GE:

Glucose equivalent

LOD:

Limit of detection

MKW:

Model kitchen waste

PTFE:

Polytetrafluoroethylene

\(R^2\) :

Determination coefficient

SD:

Standard deviation

t :

Student’s t test

TS:

Total solids

VS:

Volatile solids

References

  1. Zhang, W., et al.: Mechanism of process imbalance of long-term anaerobic digestion of food waste and role of trace elements in maintaining anaerobic process stability. Bioresour. Technol. 275, 172–182 (2019). https://doi.org/10.1016/j.biortech.2018.12.052

    Article  Google Scholar 

  2. Zhang, R., et al.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007). https://doi.org/10.1016/j.biortech.2006.02.039

    Article  Google Scholar 

  3. Neves, L., Gonc, E., Oliveira, R., Alves, M.: Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manag. 28, 965–972 (2008). https://doi.org/10.1016/j.wasman.2007.03.031

    Article  Google Scholar 

  4. Nayono, S.E., Gallert, C., Winter, J.: Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production. Bioresour. Technol. 101(18), 6987–6993 (2010). https://doi.org/10.1016/j.biortech.2010.03.123

    Article  Google Scholar 

  5. Browne, J.D., Murphy, J.D.: Assessment of the resource associated with biomethane from food waste. Appl. Energy 104, 170–177 (2013). https://doi.org/10.1016/j.apenergy.2012.11.017

    Article  Google Scholar 

  6. Ohemeng-Ntiamoah, J., Datta, T.: Evaluating analytical methods for the characterization of lipids, proteins and carbohydrates in organic substrates for anaerobic co-digestion. Bioresour. Technol. 247, 697–704 (2018). https://doi.org/10.1016/j.biortech.2017.09.154

    Article  Google Scholar 

  7. Chew, K.R., et al.: Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review. Environ. Chem. Lett. 19, 2921–2939 (2021). https://doi.org/10.1007/s10311-021-01220-z

    Article  Google Scholar 

  8. Ren, Y., et al.: A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour. Technol. 247, 1069–1076 (2018). https://doi.org/10.1016/j.biortech.2017.09.109

    Article  Google Scholar 

  9. Hegde, S., Trabold, T.A.: Anaerobic digestion of food waste with un-conventional cosubstrates for stable biogas production at high organic loading rates. Sustainability 11(14), 1–2 (2019). https://doi.org/10.3390/su11143875

    Article  Google Scholar 

  10. Matissek, R., Steiner, G.: Lebensmittelanalytik: Grundzüge, Methoden, Anwendungen, vol. 3. Springer, Berlin (2006)

    Google Scholar 

  11. Boshagh, F.: Measurement methods of carbohydrates in dark fermentative hydrogen production- a review. Int. J. Hydrog. Energy 46(47), 24028–24050 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.204

    Article  Google Scholar 

  12. Leyva, A., et al.: Rapid and sensitive anthrone-sulphuric acid assay in microplate format to quantify carbohydrate in biopharmaceutical products: method development and validation. Biologicals 36(2), 134–141 (2008). https://doi.org/10.1016/j.biologicals.2007.09.001

    Article  Google Scholar 

  13. DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., Smith, F.: Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350–356 (1956). https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  14. Richards, C., O’Connor, N., Jose, D., Barrett, A., Regan, F.: Selection and optimization of protein and carbohydrate assays for the characterization of marine biofouling. Anal. Methods 12, 2228–2236 (2020). https://doi.org/10.1039/D0AY00272K

    Article  Google Scholar 

  15. Masuko, T., et al.: Carbohydrate analysis by a phenol-sulphuric acid method in microplate format. Anal. Biochem. 339(1), 69–72 (2005). https://doi.org/10.1016/j.ab.2004.12.001

    Article  Google Scholar 

  16. Raunkjær, K., Hvitved-Jacobsen, T., Nielsen, P.H.: Measurement of pools of protein, carbohydrate and lipid in domestic wastewater. Water Res. 28(2), 251–262 (1994). https://doi.org/10.1016/0043-1354(94)90261-5

    Article  Google Scholar 

  17. Dutton, G.G.S.: Applications of gas-liquid chromatography to carbohydrates: Part 1, vol. 28, Ch. Dehydration Reactions of Carbohydrates, pp. 11–160. Academic Press (1973)

  18. Pakulski, J.D., Benner, R.: An improved method for the hydrolysis and mbth analysis of dissolved and particulate carbohydrates in seawater. Mar. Chem. 40(3), 143–160 (1992). https://doi.org/10.1016/0304-4203(92)90020-B

    Article  Google Scholar 

  19. Hörmann, H., Siddiqui, I.A.: Farbreaktionen von kohlenhydraten, iv. die produkte der farbreaktion von fructose und glucose mit anthron/schwefelsäure. Liebigs Ann. Chem. 714(1), 174–190 (1968). https://doi.org/10.1002/jlac.19687140117

    Article  Google Scholar 

  20. Yemm, E.W., Willis, A.J.: The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57(3), 508–514 (1954)

    Article  Google Scholar 

  21. Koehler, L.H.: Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal. Chem. 24(10), 1576–1579 (1952). https://doi.org/10.1021/ac60070a014

    Article  Google Scholar 

  22. Clegg, K.M.: The application of the anthrone reagent to the estimation of starch in cereals. J. Sci. Food Agric. 7(1), 40–44 (1956). https://doi.org/10.1002/jsfa.2740070108

    Article  Google Scholar 

  23. Tong, H., Lee, K., Wong, H.: Interference by azide in the estimation of carbohydrates with anthrone. Anal. Biochem. 51(2), 390–398 (1973). https://doi.org/10.1016/0003-2697(73)90492-2

    Article  Google Scholar 

  24. Dreywood, R.: Qualitative test for carbohydrate material. Ind. Eng. Chem. Anal. Ed. 18(8), 499–499 (1946). https://doi.org/10.1021/i560156a015

    Article  Google Scholar 

  25. Benito Martin, P.: Mesophilic anaerobic digestion of lignocellulosic substrates under different operating modes and extreme feeding conditions—Optimisation and modelling. Ph.D. thesis, University of Luxembourg (2015)

  26. Raposo, F., Ibelli-Bianco, C.: Performance parameters for analytical method validation: Controversies and discrepancies among numerous guidelinest. Trends Anal. Chem. 129, 115913 (2020). https://doi.org/10.1016/j.trac.2020.115913

    Article  Google Scholar 

  27. Clesceri, L.S., Greenberg, A.E., Eaton, A.D. (eds.): Standard Methods for the Examination of Water and Wastewater. APHA (American Public Health Association), Washington (1998)

    Google Scholar 

  28. 1225 Validation of Compendial Procedures The Official Compendia of Standards USP 32/NF29. United States Pharmacopeial Convention (Rockville, Md) (2009)

  29. Angelidaki, I., Sanders, W.: Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. Rev. 3(2), 117–129 (2004). https://doi.org/10.1007/s11157-004-2502-3

    Article  Google Scholar 

  30. Juo, P.-S., Stotzky, G.: Interference by nitrate and nitrite in the determination of carbohydrates by anthrone. Anal. Biochem. 21(1), 149–151 (1967). https://doi.org/10.1016/0003-2697(67)90095-4

    Article  Google Scholar 

  31. Gaudy, A.: Colorimetric determination of protein and carbohydrate. Ind. Water Wastes 7, 17–22 (1962)

    Google Scholar 

  32. Cerning-Beroard, J.: A note on sugar determination by the anthrone method. Cereal Chem. 52, 857–860 (1975)

    Google Scholar 

  33. Semiganowsky, A.K.N.: Cellulose-bestimmung durch quantitative verzuckerung. Eur. J. Inorg. Chem. 60, 333–338 (1927). https://doi.org/10.1002/cber.19270600210

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks goes to Mrs. Buch for her constructive input and helpful discussions. For the support in laboratory the author thanks Mr. Schlienz. Furthermore, the author wishes to thank syndicate Minett-Kompost for supporting this work. The author acknowledges the use of resources of University of Luxembourg.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to First Simon Weber.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, F.S. Robust Quantitative Analytic for Carbohydrate Measurement in Sludge. Waste Biomass Valor 14, 915–925 (2023). https://doi.org/10.1007/s12649-022-01902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01902-x

Keywords

Navigation