Skip to main content

Substrate Characterization in the Anaerobic Digestion Process

  • Chapter
  • First Online:
Bioenergy Research: Basic and Advanced Concepts

Abstract

Anaerobic digestion, for the production of biogas and digestate, can be a powerful technology to obtain a gaseous fuel used for combined heat and power generation and for transportation (if upgraded to biomethane) and simultaneously obtain also a fertilizer. Anaerobic digestion is a biochemical process in which wet biomass is converted into gas by bacteria. To optimize the process at both research and industry level, it is necessary to characterize in detail the substrate before and during the process. Analytical methods applied to anaerobic digestion start from substrate characterization (which can be done through proximate and ultimate analysis and calorimetry, but also through the analysis of COD, alkalinity, pH, FFA, and other inhibitors); then also the microbial community has to be monitored during the process, and gas analysis has to be performed to determine the heating value and also the contaminants inside it (e.g., siloxanes). All these measurements have to be carefully standardized and are discussed in this chapter to provide information to researchers and operators in the field of anaerobic digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amodeo C, Hafner SD, Teixeira Franco R, Benbelkacem H, Moretti P, Bayard R, Buffière P (2020) How different are manometric, gravimetric, and automated volumetric BMP results? Water 12:1839

    Article  Google Scholar 

  • Angelidaki I, Sanders W (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev Environ Sci Biotechnol 3:117–129

    Article  CAS  Google Scholar 

  • Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos JL, Guwy AJ, Kalyuzhnyi S, Jemicek P, van Lier JB (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934

    Article  CAS  Google Scholar 

  • ASTM D5210-92(2007) Standard test method for determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge (withdrawn 2016)

    Google Scholar 

  • ASTM D5511 – 18 (2018) Standard test method for determining anaerobic biodegradation of plastic materials under high-solids anaerobic-digestion conditions

    Google Scholar 

  • Bartocci P, Zampilli M, Liberti F, Pistolesi V, Massoli S, Bidini G, Fantozzi F (2020) LCA analysis of food waste co-digestion. Sci Total Environ 709:136187

    Article  CAS  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1; scientific and technical report. International Water Association, London

    Google Scholar 

  • Bioprocess control AB AMPTS II (n.d.). http://www.bioprocesscontrol.com/products/ampts-ii/. Accessed 1 Sept 2020

  • Bischofsberger W, Dichtl N, Rosenwinkel KH, Seyfried CF, Böhnke B (2005) Anaerobtechnik. Springer, Berlin

    Book  Google Scholar 

  • Boyle WC (1977) Energy recovery from sanitary landfills—a review. In: Schlegel HG, Barnea S (eds) Microbial, energy conversion. Pergamon Press, Oxford

    Google Scholar 

  • Brulé M, Oechsner H, Jungbluth T (2014) Exponential model describing methane production kinetics in batch anaerobic digestion: a tool for evaluation of biochemical methane potential assays. Bioprocess Biosyst Eng 37:1759–1770

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91:246–251

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  Google Scholar 

  • Cresson R, Pommier S, Béline F, Bouchez T, Bougrier C, Buffière P, Mazeas L, Pauss A, Pouech P, Preys S, Ribeiro T, Rouez M, Torrijos M (2015) Results from a French Interlaboratory campaign on the biological methane potential of solid substrates. In: 14thWorld Congress on Anaerobic Digestion AD-14, Vina delMar, Chile, 15–18 November 2015

    Google Scholar 

  • Dan D, Sandford RC, Worsfold PJ (2005) Determination of chemical oxygen demand in fresh waters using flow injection with on-line UV-photocatalytic oxidation and spectrophotometric detection. Analyst 130:227–232

    Article  CAS  Google Scholar 

  • De Kok S, Meijer J, Van Loosdrecht MCM, Kleerebezem R (2013) Impact of dissolved hydrogen pressure on mixed culture fermentations. Appl Microbiol Biotechnol 97:2617–2625

    Article  CAS  Google Scholar 

  • De Vrieze J, Raport L, Willems B, Verbrugge S, Volcke E, Meers E et al (2015) Inoculum selection influences the biochemical methane potential of agro-industrial substrates. Microb Biotechnol 8:776–786

    Article  CAS  Google Scholar 

  • DIN 38414-8:1985, German standard methods for the examination of water, waste water and sludge; sludge and sediments (Group S); determination of the amenability to anaerobic digestion (S 8)

    Google Scholar 

  • Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. Trends Anal Chem 24:285–294

    Article  CAS  Google Scholar 

  • Eastman JA, Ferguson JF (1981) Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J Water Pollut Control 53:352–366

    CAS  Google Scholar 

  • Ekama GA, Dold PL, Marais GVR (1986) Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems. Water Sci Technol 18:94

    Google Scholar 

  • El-Sayed SA, Mostafa ME (2014) Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG). Energy Convers Manag 85:165–172

    Article  Google Scholar 

  • CEN - EN 12176:1998, Characterization of sludge - determination of pH-value. https://standards.globalspec.com/std/478338/EN%2012176

  • EN 12879:2000, Characterization of sludges - determination of the loss on ignition of dry mass

    Google Scholar 

  • EN 12880:2000, Characterization of sludges - determination of dry residue and water content

    Google Scholar 

  • EN 13346:2000, Characterization of sludges - determination of trace elements and phosphorus - aqua regia extraction methods

    Google Scholar 

  • EN 1484:1997, Water analysis - guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC)

    Google Scholar 

  • Fantozzi F, Buratti C (2009) Biogas production from different substrates in an experimental continuously stirred tank reactor anaerobic digester. Bioresour Technol 100(23):5783–5789

    Article  CAS  Google Scholar 

  • Fantozzi F, Buratti C (2011) Anaerobic digestion of mechanically treated OFMSW: experimental data on biogas/methane production and residues characterization. Bioresour Technol 102(19):8885–8892

    Article  CAS  Google Scholar 

  • Feitkenhauer H, von Sachs J, Meyer U (2002) On-line titration of volatile fatty acids for the process control of anaerobic digestion plants. Water Res 36(1):212–218

    Article  CAS  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–583

    Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  CAS  Google Scholar 

  • Guwy AJ (2004) Equipment used for testing anaerobic biodegradability and activity. Rev Environ Sci Biotechnol 3:131–139

    Article  CAS  Google Scholar 

  • Hafner SD, Astals S (2019) Systematic error in manometric measurement of biochemical methane potential: sources and solutions. Waste Manag 91:147–155

    Article  CAS  Google Scholar 

  • Hafner SD, Koch K, Carrere H, Astals S, Weinrich S, Rennuit C (2018a) Software for biogas research: tools for measurement and prediction of methane production. SoftwareX 7:205–210

    Article  Google Scholar 

  • Hafner SD, Rennuit C, Olsen PJ, Pedersen JM (2018b) Quantification of leakage in batch biogas assays. Water Pract Technol 13(1):52–61

    Article  Google Scholar 

  • Hagen LH, Vivekanand V, Pope PB, Eijsink VGH, Horn SJ (2015) The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture. Appl Microbiol Biotechnol 99:5749–5761

    Article  CAS  Google Scholar 

  • Hashimoto AG (1989) Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biol Wastes 28:247–255

    Article  CAS  Google Scholar 

  • Hayes HC, Graening GJ, Saeed S, Kao S (2003) A summary of available analytical methods for the determination of siloxanes in biogas. In: Presentation at SWANA LFG symposium, Tampa, Florida

    Google Scholar 

  • Hettich RL, Pan C, Chourey K, Giannone RJ (2013) Metaproteomics: harnessing the power of high performance mass spectrometry to identify the suite of proteins that control metabolic activities in microbial communities. Anal Chem 85:4203–4214

    Article  CAS  Google Scholar 

  • Ho DP, Jensen PD, Batstone DJ (2013) Methanosarcinaceae and acetate oxidising pathways dominate in high-rate thermophilic anaerobic digestion of waste activated sludge. Appl Environ Microbiol 79(20):6491–6500

    Article  CAS  Google Scholar 

  • Holliger C, Alves M, Andrade D, Angelidaki I, Astals S, Baier U, Bougrier C, Buffière P, Carballa M, de Wilde V, Ebertseder F, Fernández B, Ficara E, Fotidis I, Frigon JC, Fruteau de Laclos H, Ghasimi DSM, Hack G, Hartel M, Heerenklage J, Sarvari Horvath I, Jenicek P, Koch K, Krautwald J, Lizasoain J, Liu J, Mosberger L, Nistor M, Oechsner H, Oliveira JV, Paterson M, Pauss A, Pommier S, Porqueddu I, Raposo F, Ribeiro T, Rüsch Pfund F, Strömberg S, Torrijos M, van Eekert M, van Lier J, Wedwitschka H, Wierinck I (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74(11):2515–2522

    Article  CAS  Google Scholar 

  • Holten Lützhøft HC, Boe K, Fang C, Angelidaki I (2014) Comparison of VFA titration procedures used for monitoring the biogas process. Water Res 54:262–272

    Article  CAS  Google Scholar 

  • ISO 11261:1995, Soil quality — determination of total nitrogen — modified Kjeldahl method. https://www.iso.org/standard/19239.html

  • ISO 11734:1998, Water quality - evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge - method by measurement of the biogas production (ISO 11734:1995)

    Google Scholar 

  • ISO 11885:2007, Water quality -- determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES)

    Google Scholar 

  • ISO 14853:2016, Plastics — determination of the ultimate anaerobic biodegradation of plastic materials in an aqueous system — method by measurement of biogas production

    Google Scholar 

  • ISO 15985:2014, Plastics -- determination of the ultimate anaerobic biodegradation under high-solids anaerobic-digestion conditions -- method by analysis of released biogas

    Google Scholar 

  • ISO 5663:1984, Water quality — determination of Kjeldahl nitrogen — method after mineralization with selenium. https://www.iso.org/standard/11756.html

  • ISO 5667-13:2011, Water quality — sampling — part 13: guidance on sampling of sludges, https://www.iso.org/standard/45450.html

  • ISO 6878:2004, Water quality — determination of phosphorus — ammonium molybdate spectrometric method

    Google Scholar 

  • Ito T, Yoshiguchi K, Ariesyada HD, Okabe S (2011) Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge. ISME 5:1844–1856

    Article  CAS  Google Scholar 

  • Ito T, Yoshiguchi K, Ariesyada HD, Okabe S (2012) Identification and quantification of key microbial trophic groups of methanogenic glucose degradation in an anaerobic digester sludge. Bioresour Technol 123:599–607

    Article  CAS  Google Scholar 

  • Jo Y, Kim J, Hwang K, Lee C (2018) A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Manag 78:509–520

    Article  CAS  Google Scholar 

  • Justesen CG, Astals S, Mortensen JR, Thorsen R, Koch K, Weinrich S, Triolo JM, Hafner SD (2019) Development and validation of a low-cost gas density method for measuring biochemical methane potential (BMP). Water (Switzerland) 11(12):2431

    CAS  Google Scholar 

  • Kafle GK, Bhattarai S, Kim SH, Chen L (2014) Effect of feed to microbe ratios on anaerobic digestion of Chinese cabbage waste under mesophilic and thermophilic conditions: biogas potential and kinetic study. J Environ Manag 133:293–301

    Article  Google Scholar 

  • Kappeler J, Gujer W (1992) Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling. Water Sci Technol 25:125

    Article  CAS  Google Scholar 

  • Kim SH, Kim HC, Kim CH, Yoon YM (2010) The measurement of biochemical methane potential in the several organic waste resources. Korean J Soil Sci Fert 43(3):356–362

    CAS  Google Scholar 

  • Kleerebezem R, van Loosdrecht MCM (2006) Waste characterization for implementation in ADM1. Water Sci Technol 54:167–174

    Article  CAS  Google Scholar 

  • Koch K, Drewes JE (2014) Alternative approach to estimate the hydrolysis rate constant of particulate material from batch data. Appl Energy 120:11–15

    Article  Google Scholar 

  • Koch K, Bajón Fernández Y, Drewes JE (2015) Influence of headspace flushing on methane production in biochemical methane potential (BMP) tests. Bioresour Technol 186:173–178

    Article  CAS  Google Scholar 

  • Koch K, Lippert T, Drewes JE (2017) The role of inoculum's origin on the methane yield of different substrates in biochemical methane potential (BMP) tests. Bioresour Technol 243:457–463

    Article  CAS  Google Scholar 

  • Koch K, Hafner SD, Weinrich S, Astals S (2019) Identification of critical problems in biochemical methane potential (BMP) tests from methane production curves. Front Environ Sci 7:178

    Article  Google Scholar 

  • Koch K, Hafner SD, Astals S, Weinrich S (2020a) Evaluation of common supermarket products as positive controls in biochemical methane potential (BMP) tests. Water (Switzerland) 12(5):1223

    CAS  Google Scholar 

  • Koch K, Hafner SD, Weinrich S, Astals S, Holliger C (2020b) Power and limitations of biochemical methane potential (BMP) tests. Front Energy Res 8:63

    Article  Google Scholar 

  • Kreuger E, Nges IA, Björnsson L (2011) Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels 4:44

    Article  CAS  Google Scholar 

  • Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological pathways. Cardiovasc Res 97:612–622

    Article  CAS  Google Scholar 

  • Lee S-H, Kang H-J, Lee YH, Lee TJ, Han K, Choi Y, Park H-D (2012) Monitoring bacterial community structure and variability in time scale in full-scale anaerobic digesters. J Environ Monit 14:1893–1905

    Article  CAS  Google Scholar 

  • Li J, Zicari SM, Cui Z, Zhang R (2014) Processing anaerobic sludge for extended storage as anaerobic digester inoculum. Bioresour Technol 166:201–210

    Article  CAS  Google Scholar 

  • Liberti F, Pistolesi V, Massoli S, Bartocci P, Bidini G, Fantozzi F (2018) I-REXFO LIFE: an innovative business model to reduce food waste. Energy Procedia 148:439–446

    Article  Google Scholar 

  • Lin CY, Viant MR, Tjeerdema RS (2006) Metabolomics: methodologies and applications in the environmental sciences. J Pesticide Sci 31:245–251

    Article  CAS  Google Scholar 

  • Liu C, Subashchandrabose SR, Megharaj M, Hu Z, Xiao B (2016) Diplosphaera sp. MM1 – a microalga with phycoremediation and biomethane potential. Bioresour Technol 218:1170–1177

    Article  CAS  Google Scholar 

  • Mahmoodi P, Farmanbordar S, Karimi K (2018) Analytical methods in biogas production. In: Tabatabaei M, Ghanavati H (eds) Biogas. Biofuel and biorefinery technologies, vol vol 6. Springer, Cham

    Google Scholar 

  • Melcer H, Dold PL, Jones RM, Bye CM, Takacs I, Stensel HD, Wilson AW, Sun P, Bury S (2003) Treatment processes and systems. Methods for wastewater characterization in activated sludge modeling. Water Environ Res Found, Alexandria, p 596

    Google Scholar 

  • Miron Y, Zeeman G, van Lier JB, Lettinga G (2000) The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res 34:1705–1713

    Article  CAS  Google Scholar 

  • Moletta R, Verrier D, Albagnac G (1986) Dynamic modelling of anaerobic digestion. Water Res 20:427–434

    Article  CAS  Google Scholar 

  • Musat N, Foster R, Vagner T, Adam B, Kuypers MMM (2011) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36:486–511

    Article  CAS  Google Scholar 

  • Myszograj S, Płuciennik-Koropczuk E, Jakubaszek A (2017) Cod fractions - methods of measurement and use in wastewater treatment technology. Civil Environ Eng Rep 24(1):195–206. https://content.sciendo.com/view/journals/ceer/24/1/article-p195.xml

    Article  Google Scholar 

  • National Environmental Methods Index, 3120 B (total): metals (total recoverable) in water by plasma emission spectroscopy (n.d.)

    Google Scholar 

  • National Environmental Methods Index, 4500-H+B pH value in water by potentiometry using a standard hydrogen electrode (n.d.). https://www.nemi.gov/methods/method_summary/4707/

  • National Environmental Methods Index, 4500-NorgB: nitrogen, organic, in water by Macro-Kjeldahl (n.d.). https://www.nemi.gov/methods/method_summary/5712/

  • Nelson MC, Morrison M, Yu Z (2011) A meta-analysis of the microbial diversity observed in anaerobic digesters. Bioresour Technol 102:3730–3739

    Article  CAS  Google Scholar 

  • Nielsen SS (2017) Food analysis. Springer, Berlin

    Book  Google Scholar 

  • Noguerol-Arias J, Rodríguez-Abalde A, Romero-Merino E, Flotats X (2012) Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement. Anal Chem 84:5548–5555

    Article  CAS  Google Scholar 

  • Nordberg Å, Edström M (1997) Co-digestion of ley crop silage, source sorted municipal solid waste and municipal sewage sludge. In: Proceedings from 5th FAO/SREN workshop “Anaerobic conversion for environmental protection, sanitation and re-use of residues”; 24–27. March 1997; Gent, Belgium

    Google Scholar 

  • Ntaikou I, Gavala HN, Lyberatos G (2010) Application of a modified anaerobic digestion model 1 version for fermentative hydrogen production from sweet sorghum extract by Ruminococcus albus. Int J Hydrog Energy 35:3423–3432

    Article  CAS  Google Scholar 

  • Okabe S, Kindaichi T, Ito T (2004) MAR-FISH — an ecophysiological approach to link phylogenetic affiliation and in situ metabolic activity of microorganisms at a single-cell resolution. Microb Environ 19:83–98

    Article  Google Scholar 

  • Pagliano G, Ventorino V, Panico A, Romano I, Robertiello A, Pirozzi F et al (2018) The effect of bacterial and archaeal populations on anaerobic process fed with mozzarella cheese whey and buttermilk. J Environ Manag 217:110–122

    Article  CAS  Google Scholar 

  • Pasztor I, Thury P, Pulai J (2009) Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Int J Environ Sci Technol 6:51

    Article  CAS  Google Scholar 

  • Pervin HM, GDennis PG, Lim HJ, Tyson GW, Batstone DJ, Bond PL (2013) Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res 47(19):7098–7108

    Article  CAS  Google Scholar 

  • Petersen L (2005) Pierre Gy’s theory of sampling (TOS) – in practice: laboratory and industrial didactics. PhD thesis, Aalborg University Esbjerg, Esbjerg, Denmark

    Google Scholar 

  • Pohland FG, Bloodgood DE (1963) Laboratory studies on mesophilic and thermophilic anaerobic sludge digestion. J Water Pollut Control Fed 35:11

    CAS  Google Scholar 

  • Polizzi C, Alatriste-Mondragón F, Munz G (2017) Modeling the disintegration process in anaerobic digestion of tannery sludge and fleshing. Front Environ Sci 5:37

    Article  Google Scholar 

  • Raposo F, Banks CJ, Siegert I, Heaven S, Borja R (2006) Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem 41:1444–1450. https://doi.org/10.1016/j.procbio.2006.01.012

    Article  CAS  Google Scholar 

  • Raposo F, de la Rubia MA, Borja R, Alaiz M (2008) Assessment of a modified and optimized method for determining chemical oxygen demand of solid substrates and solutions with high suspended solid content. Talanta 76:448–453

    Article  CAS  Google Scholar 

  • Raposo F, de la Rubia MA, Borja R, Alaiz M, Beltrán J, Cavinato C, Clinckspoor M, Demirer G, Diamadopoulos E, Helmreich B, Jenicek P, Martí N, Méndez R, Noguerol J, Pereira F, Picard S, Torrijos M (2009) An interlaboratory study as useful tool for proficiency testing of chemical oxygen demand measurements using solid substrates and liquid samples with high suspended solid content. Talanta 80:329–337

    Article  CAS  Google Scholar 

  • Raposo F, Fernández-Cegrí V, De la Rubia MA, Borja R, Béline F, Cavinato C, Demirer G, Fernández B, Fernández-Polanco M, Frigon JC, Ganesh R, Kaparaju P, Koubova J, Méndez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    Article  CAS  Google Scholar 

  • Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev 16:861–877

    Article  CAS  Google Scholar 

  • Raposo F, Borja R, Ibelli-Bianco C (2020) Predictive regression models for biochemical methane potential tests of biomass samples: pitfalls and challenges of laboratory measurements. Renew Sust Energ Rev 127:109890

    Article  CAS  Google Scholar 

  • Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationships between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589

    Article  CAS  Google Scholar 

  • Reilly M, Dinsdale R, Guwy A (2016) The impact of inocula carryover and inoculum dilution on the methane yields in batch methane potential tests. Bioresour Technol 208:134–139

    Article  CAS  Google Scholar 

  • Rieger L, Koch G, Kühni M, Gujer W, Siegrist H (2001) The eawag bio-p module for activated sludge model no. 3. Water Res 35:3887

    Article  CAS  Google Scholar 

  • Shakya M, Quice C, Campbell JH, Yang ZK, Schadt CW, Podar M (2013) Comparative metagenomic and rRNA microbial diversity characterization using archaeal and bacterial synthetic communities. Environ Microbiol 15:1882–1899

    Article  CAS  Google Scholar 

  • Standard methods for the examination of water and wastewater, 2320 Alkalinity (n.d.). http://folk.uio.no/rvogt/KJM_MEF_4010/Alkalinity.pdf

  • Standard methods for the examination of water and wastewater, 2540 SOLIDS (2017). https://www.standardmethods.org/doi/abs/10.2105/SMWW.2882.030

  • Standard methods for the examination of water and wastewater, 4500-P PHOSPHORUS (2017), https://www.standardmethods.org/doi/10.2105/SMWW.2882.093

  • Standard methods for the examination of water and wastewater, 5220 CHEMICAL OXYGEN DEMAND (COD) (2017). https://www.standardmethods.org/doi/10.2105/SMWW.2882.103

  • Standard methods for the examination of water and wastewater, 5310 TOTAL ORGANIC CARBON (TOC) (2017). https://www.standardmethods.org/doi/abs/10.2105/SMWW.2882.104

  • Steffen R, Szolar O, Braun R (1998) Feedstocks for anaerobic digestion. Q:\RODL\PROJEKTE\AD-NETT\FEEDNEW.DOC. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.487.370&rep=rep1&type=pdf. Accessed 23 May 2020

  • Strik DPBTB, Domnanovich AM, Holubar P (2006) A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem 41(6):1235–1238

    Article  CAS  Google Scholar 

  • Strömberg S, Nistor M, Liu J (2014) Towards eliminating systematic errors caused by the experimental conditions in biochemical methane potential (BMP) tests. Waste Manag 34:1939–1948

    Article  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang K-Q, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    Article  CAS  Google Scholar 

  • Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Scvensson BH, Sorenson SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626

    Article  CAS  Google Scholar 

  • Talbot G, Topp E, Palin MF, Masse DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537

    Article  CAS  Google Scholar 

  • Temperton B, Giovannoni SJ (2012) Metagenomics: microbial diversity through a scratched lens. Curr Opin Microbiol 15:605–612

    Article  CAS  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    Article  CAS  Google Scholar 

  • Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    Article  CAS  Google Scholar 

  • VDI 4630:2016, Fermentation of organic materials - characterization of the substrate, sampling, collection of material data, fermentation tests

    Google Scholar 

  • Wang B, Strömberg S, Li C, Nges IA, Nistor M, Deng L et al (2015) Effects of substrate concentration on methane potential and degradation kinetics in batch anaerobic digestion. Bioresour Technol 194:240–246

    Article  CAS  Google Scholar 

  • Wang B, Strömberg S, Nges IA, Nistor M, Liu J (2016) Impacts of inoculum pre-treatments on enzyme activity and biochemical methane potential. J Biosci Bioeng 121:557–560

    Article  CAS  Google Scholar 

  • Weinrich S, Schäfer F, Bochmann G, Liebetrau J (2018) Value of batch tests for biogas potential analysis: method comparison and challenges of substrate and efficiency evaluation of biogas plants. In: Murphy JD (ed) IEA bioenergy task 37, 2018: 10. IEA Bioenergy

    Google Scholar 

  • Wellinger A, Murphy J, Baxter D (2013) The biogas handbook: science, production and application. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  • Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2010) Bacterial community structures are unique and resilient in full scale bioenergy systems. PNAS 108:4158–4163

    Article  Google Scholar 

  • Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, Verberkmoes NC, Wilkins NC, Hettich MJ, Lipton MS, Williams KH et al (2012) Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science 337:1661–1665

    Article  CAS  Google Scholar 

  • Xu S, Hultman B (1996) Experiences in wastewater characterization and model calibration for the activated sludge process. Water Sci Technol 33:89

    CAS  Google Scholar 

  • Zhang H, Banaszak JE, Parameswaran P, Alder J, Krajmalnik-Brown R, Rittmann BE (2009) Focused-pulsed sludge pre-treatment increases the bacterial diversity and relative abundance of acetoclastic methanogens in a full-scale anaerobic digester. Water Res 43:4517–4526

    Article  CAS  Google Scholar 

  • Ziganshin AM, Liebetrau J, Proter J, Kleinsteuber S (2013) Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials. Appl Microbiol Biotechnol 97:5161–5174

    Article  CAS  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, van't Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    Article  CAS  Google Scholar 

Download references

Acknowledgments

i-REXFO LIFE (LIFE16ENV/IT/000547) is a project funded by the EU under the LIFE 2016 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Bartocci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bartocci, P. et al. (2021). Substrate Characterization in the Anaerobic Digestion Process. In: Srivastava, M., Srivastava, N., Singh, R. (eds) Bioenergy Research: Basic and Advanced Concepts. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-33-4611-6_10

Download citation

Publish with us

Policies and ethics