Skip to main content
Log in

Pumpkin Peel Valorization Using Green Extraction Technology to Obtain β-Carotene Fortified Mayonnaise

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study aimed to recover β-carotene from peels produced as a by-product during the industrial processing of pumpkins using a high-efficiency technology that produces no waste and is harmless to the environment. β-Carotene extraction from pumpkin peel was carried out by maceration and ultrasound-assisted technique, with sunflower oil instead of n-hexane as an environment-friendly solvent. Influence of the lecithin:PGPR (polyglycerol polyricinoleate) ratio was studied for microemulsion solvent method on β-carotene extraction. Response Surface Methodoloy was used to optimize the parameters of each performed treatment. The produced sunflower oil was utilized to prepare mayonnaise. Sensory flavor of the product, as well as the change in color and peroxide characteristics after rapid storage were also determined. Under optimal conditions, maceration with sunflower oil, maceration with n-hexane, ultrasound-assisted, and microemulsion solvent methods, extracted β-carotene levels were 99.83, 125.75, 127.93, and 149.71 mg/100 g DM, respectively. Most efficient β-carotene extraction was obtained utilizing a microemulsion system with 0.098% lecithin and 1.902% PGPR as the solvent. Mayonnaise made with β-carotene-rich sunflower oil was well received in terms of sensory quality, with no negative changes in the product's unique features. β-Carotene enhanced mayonnaise was more resistant to oxidation during storage than the control mayonnaise as shown by the results of color and peroxide values.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Esparza, I., Jiménez-Moreno, N., Bimbela, F., Ancín-Azpilicueta, C., Gandía, L.M.: Fruit and vegetable waste management: conventional and emerging approaches. J. Environ. Manag. (2020). https://doi.org/10.1016/j.jenvman.2020.110510

    Article  Google Scholar 

  2. Shetty, A.A., Rana, R., Buckseth, T., Preetham, S.P.: Waste utilization in cucurbits: a review. Waste Biomass Valoriz. (2012). https://doi.org/10.1007/s12649-012-9114-x

    Article  Google Scholar 

  3. Sagar, N.A., Pareek, S., Sharma, S., Yahia, E.M., Lobo, M.G.: Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Comp. Rev. Food Sci. Food Saf. (2018). https://doi.org/10.1111/1541-4337.12330

    Article  Google Scholar 

  4. Jayesree, N., Hang, P.K., Priyangaa, A., Krishnamurthy, N.P., Ramanan, R.N., Turki, M.A., Ooi, C.W.: Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carote and pectin. Chemosphere (2021). https://doi.org/10.1016/j.chemosphere.2021.129919

    Article  Google Scholar 

  5. Duque-Acevedo, M., Belmonte-Ureña, L.J., Yakovleva, N., Camacho-Ferre, F.: Analysis of the circular economic production models and their approach in agriculture and agricultural waste biomass management. Int. J. Environ. Res. Public Health (2020). https://doi.org/10.3390/ijerph17249549

    Article  Google Scholar 

  6. Saini, A., Panesar, P.S., Bera, M.B.: Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. (2019). https://doi.org/10.1186/s40643-019-0261-9

    Article  Google Scholar 

  7. Martins, N., Ferreira, I.C.: Wastes and by-products: upcoming sources of carotenoids for biotechnological purposes and health-related applications. Trends Food Sci. Technol. 62, 33–48 (2017)

    Article  Google Scholar 

  8. da Silva Lima, R., Nunes, I.L., Block, J.M.: Ultrasound-assisted extraction for the recovery of carotenoids from Guava’s pulp and waste powders. Plant Foods Hum. Nutr. (2020). https://doi.org/10.1007/s11130-019-00784-0

    Article  Google Scholar 

  9. Stoica, A., Dobre, T., Stroescu, M., Sturzoiu, A., Pârvulescu, O.C.: From laboratory to scale-up by modelling in two cases of β-carotene extraction from vegetable products. Food Bioprod. Process. (2015). https://doi.org/10.1016/j.fbp.2014.02.005

    Article  Google Scholar 

  10. Gul, K., Tak, A., Singh, A.K., Singh, P., Yousuf, B., Wani, A.A.: Chemistry, encapsulation, and health benefits of β-carotene-A review. Cogent Food Agric. (2015). https://doi.org/10.1080/23311932.2015.1018696

    Article  Google Scholar 

  11. Goulson, M.J., Warthesen, J.J.: Stability and antioxidant activity of beta carotene in conventional and high oleic canola oil. J. Food Sci. (1999). https://doi.org/10.1111/j.1365-2621.1999.tb12267.x

    Article  Google Scholar 

  12. Lee, C.H., Cho, J.K., Lee, S.J., Koh, W., Park, W., Kim, C.H.: Enhancing β-carotene content in Asian noodles by adding pumpkin powder. Cereal Chem. (2002). https://doi.org/10.1094/CCHEM.2002.79.4.593

    Article  Google Scholar 

  13. Kulczyński, B., Gramza-Michalowska, A.: The profile of carotenoids and other bioactive molecules in various pumpkin fruits (Cucurbita maxima Duchesne) cultivars. Molecules (2019). https://doi.org/10.3390/molecules24183212

    Article  Google Scholar 

  14. Singh, A., Kumar, V.: Cultivars effect on the physical characteristics of pumpkin (Cucurbita moschata duch.) seeds and kernels. J. Inst. Eng. (India) A 101(4), 631–641 (2020). https://doi.org/10.1007/s40030-020-00460-6

    Article  Google Scholar 

  15. Dhiman, A.K., Sharma, K., Attri, S.: Functional constitutents and processing of pumpkin: a review. J. Food Sci. Technol. 46(5), 411 (2009)

    Google Scholar 

  16. Norfezah, M.N., Hardacre, A., Brennan, C.S.: Comparison of waste pumpkin material and its potential use in extruded snack foods. Food Sci. Technol. Int. 17(4), 367–373 (2011). https://doi.org/10.1177/1082013210382484

    Article  Google Scholar 

  17. Cuco, R.P., Cardozo-Filho, L., da Silva, C.: Simultaneous extraction of seed oil and active compounds from peel of pumpkin (Cucurbita maxima) using pressurized carbon dioxide as solvent. J. Supercrit. Fluids 143, 8–15 (2019). https://doi.org/10.1016/j.supflu.2018.08.002

    Article  Google Scholar 

  18. Rico, X., Gullón, B., Alonso, J.L., Yáñez, R.: Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: an overview. Food Res. Int. 132, 109086 (2020). https://doi.org/10.1016/j.foodres.2020.109086

    Article  Google Scholar 

  19. Hussain, A., Kausar, T., Din, A., Murtaza, M.A., Jamil, M.A., Noreen, S., et al.: Determination of total phenolic, flavonoid, carotenoid, and mineral contents in peel, flesh, and seeds of pumpkin (Cucurbita maxima). J. Food Process. Preserv. 45(6), e15542 (2021)

    Article  Google Scholar 

  20. Kim, M.Y., Kim, E.J., Kim, Y.N., Choi, C., Lee, B.H.: Comparison of the chemical compositions and nutritive values of various pumpkin (cucurbitaceae) species and parts. Nutr. Res. Pract. 6(1), 21–27 (2012). https://doi.org/10.4162/nrp.2012.6.1.21

    Article  Google Scholar 

  21. Li, Y., Fabiano-Tixier, A.S., Tomao, V., Cravotto, G., Chemat, F.: Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason. Sonochem. 20(1), 12–18 (2013). https://doi.org/10.1016/j.ultsonch.2012.07.005

    Article  Google Scholar 

  22. Boukroufa, M., Boutekedjiret, C., Chemat, F.: Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour.-Eff. Technol. 3(3), 252–262 (2017). https://doi.org/10.1016/j.reffit.2017.08.007

    Article  Google Scholar 

  23. Chutia, H., Mahanta, C.L.: Green ultrasound and microwave extraction of carotenoids from passion fruit peel using vegetable oils as a solvent: optimization, comparison, kinetics, and thermodynamic studies. Innov. Food Sci. Emerg. Technol. 67, 102547 (2021)

    Article  Google Scholar 

  24. Jalali-Jivan, M., Abbasi, S., Fathi-Achachlouei, B.: Lutein extraction by microemulsion technique: evaluation of stability versus thermal processing and environmental stresses. LWT 149, 111839 (2021). https://doi.org/10.1016/j.lwt.2021.111839

    Article  Google Scholar 

  25. Portillo-López, R., Morales-Contreras, B.E., Lozano-Guzmán, E., Basilio-Heredia, J., Muy-Rangel, M.D., Ochoa-Martínez, L.A., Morales-Castro, J.: Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: optimization of extraction parameters. J. Food Sci. 86(7), 3122–3136 (2021). https://doi.org/10.1111/1750-3841.15815

    Article  Google Scholar 

  26. Chemat, F., Abert Vian, M., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S., Fabiano Tixier, A.S.: Review of alternative solvents for green extraction of food and natural products: panorama, principles, applications and prospects. Molecules 24(16), 3007 (2019). https://doi.org/10.3390/molecules24163007

    Article  Google Scholar 

  27. Parjikolaei, B.R., El-Houri, R.B., Fretté, X.C., Christensen, K.V.: Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. J. Food Eng. 155, 22–28 (2015). https://doi.org/10.1016/j.jfoodeng.2015.01.009

    Article  Google Scholar 

  28. Yara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A.S., Chemat, F.: Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. Molecules 22(9), 1474 (2017). https://doi.org/10.3390/molecules22091474

    Article  Google Scholar 

  29. Elik, A., Yanık, D.K., Göğüş, F.: Microwave-assisted extraction of carotenoids from carrot juice processing waste using flaxseed oil as a solvent. LWT 123, 109100 (2020). https://doi.org/10.1016/j.lwt.2020.109100

    Article  Google Scholar 

  30. Mezzomo, N., Maestri, B., dos Santos, R.L., Maraschin, M., Ferreira, S.R.: Pink shrimp (P. brasiliensis and P. paulensis) residue: influence of extraction method on carotenoid concentration. Talanta 85(3), 1383–1391 (2011). https://doi.org/10.1016/j.talanta.2011.06.018

    Article  Google Scholar 

  31. Goula, A.M., Ververi, M., Adamopoulou, A., Kaderides, K.: Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason sonochem. 34, 821–830 (2017). https://doi.org/10.1016/j.ultsonch.2016.07.022

    Article  Google Scholar 

  32. Rahimi, S., Mikani, M.: Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: application in tomato processing wastes. Microchem. J. 146, 1033–1042 (2019). https://doi.org/10.1016/j.microc.2019.02.039

    Article  Google Scholar 

  33. Amiri-Rigi, A., Abbasi, S.: Microemulsion-based lycopene extraction: effect of surfactants, co-surfactants and pretreatments. Food Chem. 197, 1002–1007 (2016). https://doi.org/10.1016/j.foodchem.2015.11.077

    Article  Google Scholar 

  34. Jalali-Jivan, M., Abbasi, S., Scanlon, M.G.: Microemulsion as nanoreactor for lutein extraction: optimization for ultrasound pretreatment. J. Food Biochem. 43(8), e12929 (2019). https://doi.org/10.1111/jfbc.12929

    Article  Google Scholar 

  35. Tsogtoo, B., Taarji, N., Melanie, H., Khalid, N., Tsolmon, S., Kobayashi, I., Nakajima, M.: Emulsion-based extraction of β-sitosterol and carotenoids from sea buckthorn (Hippophae rhamnoides) pomace. Int. Food Res. J. 27(1), 56–65 (2020)

    Google Scholar 

  36. Amiri-Rigi, A., Abbasi, S., Scanlon, M.G.: Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: optimization of enzymatic and ultrasound pre-treatments. Innov. Food Sci. Emerg. Technol. 35, 160–167 (2016). https://doi.org/10.1016/j.ifset.2016.05.004

    Article  Google Scholar 

  37. Roohinejad, S., Oey, I., Everett, D.W., Niven, B.E.: Evaluating the effectiveness of β-carotene extraction from pulsed electric field-treated carrot pomace using oil-in-water microemulsion. Food Bioprocess. Technol. 7(11), 3336–3348 (2014). https://doi.org/10.1007/s11947-014-1334-6

    Article  Google Scholar 

  38. Baria, B., Upadhyay, N., Singh, A.K., Malhotra, R.K.: Optimization of ‘green’extraction of carotenoids from mango pulp using split plot design and its characterization. LWT 104, 186–194 (2019). https://doi.org/10.1016/j.lwt.2019.01.044

    Article  Google Scholar 

  39. Kunthakudee, N., Sunsandee, N., Chutvirasakul, B., Ramakul, P.: Extraction of lycopene from tomato with environmentally benign solvents: Box-Behnken design and optimization. Chem. Eng. Commun. 207(4), 574–583 (2020). https://doi.org/10.1080/00986445.2019.1610882

    Article  Google Scholar 

  40. Nour, V., Corbu, A.R., Rotaru, P., Karageorgou, I., Lalas, S.: Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas Aceites 69(1), e238–e238 (2018). https://doi.org/10.3989/gya.0994171

    Article  Google Scholar 

  41. Sachindra, N.M., Mahendrakar, N.S.: Process optimization for extraction of carotenoids from shrimp waste with vegetable oils. Bioresour. Technol. 96(10), 1195–1200 (2005). https://doi.org/10.1016/j.biortech.2004.09.018

    Article  Google Scholar 

  42. Handayani, A.D., Indraswati, N., Ismadji, S.: Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: studies of extraction kinetics and thermodynamic. Bioresour. Technol. 99(10), 4414–4419 (2008). https://doi.org/10.1016/j.biortech.2007.08.028

    Article  Google Scholar 

  43. Purohit, A.J., Gogate, P.R.: Ultrasound-assisted extraction of β-carotene from waste carrot residue: effect of operating parameters and type of ultrasonic irradiation. Sep. Sci. Technol. 50(10), 1507–1517 (2015). https://doi.org/10.1080/01496395.2014.978472

    Article  Google Scholar 

  44. Ordoñez-Santos, L.E., Martínez-Girón, J., Rodríguez-Rodríguez, D.X.: Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. Dyna 86(209), 91–96 (2019)

    Article  Google Scholar 

  45. Salazar-González, C.Y., Rodríguez-Pulido, F.J., Stinco, C.M., Terrab, A., Díaz-Moreno, C., Fuenmayor, C., Heredia, F.J.: Carotenoid profile determination of bee pollen by advanced digital image analysis. Comput. Electron. Agric. 175, 105601 (2020). https://doi.org/10.1016/j.compag.2020.105601

    Article  Google Scholar 

  46. Salami, A., Asefi, N., Kenari, R.E., Gharekhani, M.: Extraction of pumpkin peel extract using supercritical CO2 and subcritical water technology: enhancing oxidative stability of canola oil. J. Food Sci. Technol. 58(3), 1101–1109 (2021). https://doi.org/10.1007/s13197-020-04624-x

    Article  Google Scholar 

  47. Sharma, M., Bhat, R.: Extraction of carotenoids from pumpkin peel and pulp: comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods 10(4), 787 (2021). https://doi.org/10.3390/foods10040787

    Article  Google Scholar 

  48. Okoro, E.E., Nnaji, C.G., Sanni, S.E., Ahuekwe, E.F., Igwilo, K.C.: Evaluation of a naturally derived waste brown oil extract for demulsification of crude oil emulsion. Energy Explor. Exploit. 38(4), 905–922 (2020). https://doi.org/10.1177/0144598720905080

    Article  Google Scholar 

  49. Mehmood, T., Ahmed, A., Ahmad, A., Ahmad, M.S., Sandhu, M.A.: Optimization of mixed surfactants-based β-carotene nanoemulsions using response surface methodology: an ultrasonic homogenization approach. Food Chem. 253, 179–184 (2018). https://doi.org/10.1016/j.foodchem.2018.01.136

    Article  Google Scholar 

  50. Evanuarini, H., Hastuti, P.: Characteristic of low fat mayonnaise containing porang flour as stabilizer. Pak. J. Nutr. 14(7), 392–395 (2015)

    Article  Google Scholar 

  51. Huang, L., Wang, T., Han, Z., Meng, Y., Lu, X.: Effect of egg yolk freezing on properties of mayonnaise. Food Hydrocoll. 56, 311–317 (2016). https://doi.org/10.1016/j.foodhyd.2015.12.027

    Article  Google Scholar 

  52. Alizadeh, L., Abdolmaleki, K., Nayebzadeh, K., Shahin, R.: Effects of tocopherol, rosemary essential oil and Ferulago angulata extract on oxidative stability of mayonnaise during its shelf life: a comparative study. Food Chem. 285, 46–52 (2019). https://doi.org/10.1016/j.foodchem.2019.01.028

    Article  Google Scholar 

  53. Park, C.H., Bong, S.J., Lim, C.J., Kim, J.K., Park, S.U.: Transcriptome analysis and metabolic profiling of green and red mizuna (Brassica rapa L. var. japonica). Foods 9(8), 1079 (2020)

    Article  Google Scholar 

  54. Stroppa V., Ribeiro A., Luccas V., Grimaldi R., Gonçalves L., Kieckbusch T.: Influence of soy lecithin and PGPR levels in chocolate crystallization behavior. International Congress on Engineering and Food. http://www.icef11.org/content/papers/epf/EPF1081

  55. Anonymous: Codex General Standard for Fats and Oils CODEX STAN 19-1981, Rev. 2-19991999

  56. Flamminii, F., Di Mattia, C.D., Sacchetti, G., Neri, L., Mastrocola, D., Pittia, P.: Physical and sensory properties of mayonnaise enriched with encapsulated olive leaf phenolic extracts. Foods 9(8), 997 (2020). https://doi.org/10.3390/foods9080997

    Article  Google Scholar 

  57. Worrasinchai, S., Suphantharika, M., Pinjai, S., Jamnong, P.: β-Glucan prepared from spent brewer’s yeast as a fat replacer in mayonnaise. Food Hydrocoll. 20(1), 68–78 (2006). https://doi.org/10.1016/j.foodhyd.2005.03.005

    Article  Google Scholar 

  58. Santipanichwong, R., Suphantharika, M.: Carotenoids as colorants in reduced-fat mayonnaise containing spent brewer’s yeast β-glucan as a fat replacer. Food Hydrocoll. 21(4), 565–574 (2007). https://doi.org/10.1016/j.foodhyd.2006.07.003

    Article  Google Scholar 

  59. Nour, V.: Oxidative stability, physico-chemical and sensory properties of mayonnaise enriched with carotenoids from sea buckthorn pomace during refrigerated storage. J. Food Nutr. Res. 60(2), 168–177 (2021)

    Google Scholar 

  60. Haniff, M.: Yahaya, SA, Aziz, NS, Wan Mustapha, WA, Sofian-Seng, NS, Rahman, HA, Lim, SJ: Development of carotenoid-rich mayonnaise using Carotino oil. J. Food Process. Preserv. 44(9), e14688 (2020). https://doi.org/10.1111/jfpp.14688

    Article  Google Scholar 

  61. Li, C.Y., Kim, H.W., Li, H., Lee, D.C., Rhee, H.I.: Antioxidative effect of purple corn extracts during storage of mayonnaise. Food Chem. 152, 592–596 (2014). https://doi.org/10.1016/j.foodchem.2013.11.152

    Article  Google Scholar 

  62. Depree, J.A., Savage, G.P.: Physical and flavour stability of mayonnaise. Trends Food Sci. Technol. 12(5–6), 157–163 (2001)

    Article  Google Scholar 

  63. Kaur, D., Wani, A.A., Singh, D.P., Sogi, D.S.: Shelf life enhancement of butter, ice-cream, and mayonnaise by addition of lycopene. Int. J. Food Prop. 14(6), 1217–1231 (2011). https://doi.org/10.1080/10942911003637335

    Article  Google Scholar 

  64. Kwon, H., Ko, J.H., Shin, H.S.: Evaluation of antioxidant activity and oxidative stability of spice-added mayonnaise. Food Sci. Biotechnol. 24(4), 1285–1292 (2015). https://doi.org/10.1007/s10068-015-0165-1

    Article  Google Scholar 

  65. Salami, A., Asefi, N., Kenari, R.E., Gharekhani, M.: Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. J. Food Meas. Charact. 14(5), 2433–2442 (2020). https://doi.org/10.1007/s11694-020-00491-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Administration Unit of Akdeniz University (Antalya, Turkey) for financial support (Project no: FYL-2020-5456).

Author information

Authors and Affiliations

Authors

Contributions

Methodology, formal analysis, investigation, writing-original draft: KKG; Methodology, writing-review & editing, supervision, funding acquisition: MT.

Corresponding author

Correspondence to Mehmet Torun.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gungor, K.K., Torun, M. Pumpkin Peel Valorization Using Green Extraction Technology to Obtain β-Carotene Fortified Mayonnaise. Waste Biomass Valor 13, 4375–4388 (2022). https://doi.org/10.1007/s12649-022-01866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01866-y

Keywords

Navigation