Skip to main content
Log in

The Pozzolanic Activity of Sediments Treated by the Flash Calcination Method

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The dredged sediment has been used as an alternative material in the construction sector. However, it’s often necessary to apply the specific treatments in order to improve their reactivity and performance. The papar aims to investigate the pozzolanic reactivity of a river sediment treated by flash calcination method at calcination temperatures 650, 750, and 800 °C respectively to develop a novel pouzzolanic admixture for blended cement. The pozzolanic reactivity of flash calcined sediments was evaluated by using numerous analysis such as Fratini test, isothermal calorimetry analysis, lime consumption analysis and compressive strength development. The results clearly showed the detrimental effect of raw sediment on the cement hydration, resistance development and microstructure of mortars. However, flash calcined sediments clearly exhibited pozzolanic reactivity and considerably improved the microstructure, mechanical performance with a same substitution rate. The results demonstrated that flash calcination could be used as a suitable treatment method to produce a new supplementary cementitious materials of low—CO2 blended cement.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

We confirm that all results are available in the database. If necessary, please contact us at the address: duc.chinh.chu@imt-nord-europe.fr.

References

  1. Bordy, A.: Influence des conditions thermo-hydriques de conservation sur l ’ hydratation de matériaux cimentaires à base d ’ une fine recyclée, pp. 1–155 (2016)

  2. La production mondiale de ciment. https://www.planetoscope.com/matieres-premieres/1708-production-mondiale-de-ciment

  3. Kajaste, R., Hurme, M.: Cement industry greenhouse gas emissions - management options and abatement cost. J. Clean. Prod. 112, 4041–4052 (2015)

    Article  Google Scholar 

  4. Teklay, A., Yin, C., Rosendahl, L., Bøjer, M.: Calcination of kaolinite clay particles for cement production: a modeling study. Cem. Concr. Res. 61–62, 11–19 (2014). https://doi.org/10.1016/j.cemconres.2014.04.002

    Article  Google Scholar 

  5. Proske, T., Rezvani, M., Palm, S., Müller, C., Graubner, C.A.: Concretes made of efficient multi-composite cements with slag and limestone. Cem. Concr. Compos. 89, 107–119 (2018). https://doi.org/10.1016/j.cemconcomp.2018.02.012

    Article  Google Scholar 

  6. Joshi, R.C., Lohtia, R.P.: Fly Ash in Concrete: Production, Properties and Uses, p. 128. Gordon and Breach Science Publishers, Amsterdam (1997)

    Google Scholar 

  7. Sebaibi, N., Benzerzour, M., Abriak, N.E., Binetruy, C.: Mechanical and physical properties of a cement matrix through the recycling of thermoset composites. Constr. Build. Mater. 34, 226–235 (2012). https://doi.org/10.1016/j.conbuildmat.2012.02.048

  8. Sebaibi, N., Boutouil, M.: Reducing energy consumption of prefabricated building elements and lowering the environmental impact of concrete. Eng. Struct. 213, 110594 (2020). https://doi.org/10.1016/j.engstruct.2020.110594

  9. Cassagnabère, F., Escadeillas, G., Mouret, M.: Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete. Constr. Build. Mater. 23, 775–784 (2009). https://doi.org/10.1016/j.conbuildmat.2008.02.022

    Article  Google Scholar 

  10. Escadeillas, G., Hornain, H.: La durabilité des bétons vis-a-vis des environnements chimiquement agressifs. La Durabilité Des Bétons, pp. 613–705 (2008)

  11. Siderugiques, C.C. technique et de promotion des laitiers: Les laitiers sidérurgiques (2019)

  12. Snellings, R., Horckmans, L., Van Bunderen, C., Vandewalle, L., Cizer, Ö.: Flash-calcined dredging sediment blended cements: effect on cement hydration and properties. Mater. Struct. Constr. 50, 241 (2017). https://doi.org/10.1617/s11527-017-1108-5

    Article  Google Scholar 

  13. Dubois, V.: Etude du comportement physico-mécanique et caractérisation environnementale des sédiments marins – Valorisation en technique routière. Thèse de doctorat (2006)

  14. Tran, N.T.: Valorisation de sédiments marins et fluviaux en technique routière (2009)

  15. Benzerzour, M., Mouhamahou, A., Abriak, N.-E.: New experimental approach of the reuse of dredged sediments in a cement matrix by physical and heat treatment. Constr. Build. Mater. 140, 432–444 (2017)

    Article  Google Scholar 

  16. Dang, T.A., Kamali-Bernard, S., Prince, W.A.: Design of new blended cement based on marine dredged sediment. Constr. Build. Mater. 41, 602–611 (2013). https://doi.org/10.1016/j.conbuildmat.2012.11.088

    Article  Google Scholar 

  17. Benzerzour, M., Maherzi, W., Amar, M.A.A., Abriak, N.E., Damidot, D.: Formulation of mortars based on thermally treated sediments. J. Mater. Cycles Waste Manag. 20, 592–603 (2018). https://doi.org/10.1007/s10163-017-0626-0

    Article  Google Scholar 

  18. Faure, A., Coudray, C., Anger, B., Moulin, I., Colina, H., Izoret, L., Théry, F., Smith, A.: Beneficial reuse of dam fine sediments as clinker raw material. Constr. Build. Mater. 218, 365–384 (2019). https://doi.org/10.1016/j.conbuildmat.2019.05.047

    Article  Google Scholar 

  19. Anger, B.: Caractérisation des sédiments fins des retenues hydroélectriques en vue d ’ une orientation vers des filières de valorisation matière (2014)

  20. Chu, D.C., Kleib, J., Amar, M., Benzerzour, M., Abriak, N.: Recycling of dredged sediment as a raw material for the manufacture of Portland cement: numerical modeling of the hydration of synthesized cement using the CEMHYD3D code. J. Build. Eng. 48, 103871 (2022). https://doi.org/10.1016/j.jobe.2021.103871

    Article  Google Scholar 

  21. Aouad, G., Laboudigue, A., Gineys, N., Abriak, N.E.: Dredged sediments used as novel supply of raw material to produce Portland cement clinker. Cem. Concr. Compos. 34, 788–793 (2012). https://doi.org/10.1016/j.cemconcomp.2012.02.008

    Article  Google Scholar 

  22. Zhao, Z., Benzerzour, M., Abriak, N.E., Damidot, D., Courard, L., Wang, D.: Use of uncontaminated marine sediments in mortar and concrete by partial substitution of cement. Cem. Concr. Compos. 93, 155–162 (2018). https://doi.org/10.1016/j.cemconcomp.2018.07.010

    Article  Google Scholar 

  23. Paria, S., Yuet, P.K.: Solidification-stabilization of organic and inorganic contaminants using portland cement: a literature review. Environ. Rev. 14, 217–255 (2006). https://doi.org/10.1139/A06-004

    Article  Google Scholar 

  24. Safhi, A.M., Rivard, P., Yahia, A., Benzerzour, M., Khayat, K.H.: Valorization of dredged sediments in self-consolidating concrete: fresh, hardened, and microstructural properties. J. Clean. Prod. 263, 121472 (2020). https://doi.org/10.1016/j.jclepro.2020.121472

    Article  Google Scholar 

  25. Rojo, A., Mardel, A.P., Lanos, C., Rojo, A., Mardel, A.P., Lanos, C., Proc, L.M., Amandine, R., Annabelle, P., Christophe, L., Laurent, M.: Procédés d ’ activation des sols argileux (2015)

  26. Salvador, S., Pons, O.: Semi-mobile flash dryer/calciner unit to manufacture pozzolana from raw clay soils: application to soil stabilisation. Constr. Build. Mater. 14, 109–117 (2000). https://doi.org/10.1016/S0950-0618(00)00005-2

    Article  Google Scholar 

  27. San Nicolas, R., Cyr, M., Escadeillas, G.: Characteristics and applications of flash metakaolins. Appl. Clay Sci. 83–84, 253–262 (2013). https://doi.org/10.1016/j.clay.2013.08.036

    Article  Google Scholar 

  28. Teklay, A., Yin, C., Rosendahl, L., Køhler, L.L.: Experimental and modeling study of flash calcination of kaolinite rich clay particles in a gas suspension calciner. Appl. Clay Sci. 103, 10–19 (2015). https://doi.org/10.1016/j.clay.2014.11.003

    Article  Google Scholar 

  29. Berenger, A., Olivier, G., Lanos, C., Daiguebonne, C., Freslon, S., Tessier, C., Laurans, M., Baux, C., Greffet, H.: A new calcium sulfate-based plaster composed of composite particles. Mater. Struct. Constr. 48, 2685–2696 (2015). https://doi.org/10.1617/s11527-014-0346-z

    Article  Google Scholar 

  30. Tribout, C.: Valorisation de sédiments traités en techniques routières : contribution à la mise en place d’un protocole d’acceptabilité. Thèse de doctorant de l’Université Toulouse III (2010)

  31. Teklay, A., Yin, C., Rosendahl, L.: Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: a way to reduce CO2 footprint from cement industry. Appl. Energy. 162, 1218–1224 (2016). https://doi.org/10.1016/j.apenergy.2015.04.127

    Article  Google Scholar 

  32. Ferreiro, S., Canut, M.M.C., Lund, J., Herfort, D.: Influence of fineness of raw clay and calcination temperature on the performance of calcined clay-limestone blended cements. Appl. Clay Sci. 169, 81–90 (2019). https://doi.org/10.1016/j.clay.2018.12.021

    Article  Google Scholar 

  33. Richardson, I.G.: Nature of C-S-H in hardened cements. Cem. Concr. Res. 29, 1131–1147 (1999). https://doi.org/10.1016/S0008-8846(99)00168-4

    Article  Google Scholar 

  34. Berthomier, M.: Etude de la lixiviation de l’aluminium de matériaux cimentaires à base de CEM III utilisés dans les canalisations d’eau potable : approche expérimentale et numérique (2020)

  35. Bentz, D.P.: Incorporation of Fly Ash into a 3-D Cement Hydration Microstructure Model Nistir 6050 (1997)

  36. Nonat, A.: Chapitre2: L’hydratation des ciments- La durabilité des bétons (2008)

  37. Snellings, R., Cizer, Ö., Horckmans, L., Durdziński, P.T., Dierckx, P., Nielsen, P., Van Balen, K., Vandewalle, L.: Properties and pozzolanic reactivity of flash calcined dredging sediments. Appl. Clay Sci. (2016). https://doi.org/10.1016/j.clay.2016.04.019

    Article  Google Scholar 

  38. Amar, M., Benzerzour, M., Abriak, N.E., Mamindy-Pajany, Y.: Study of the pozzolanic activity of a dredged sediment from Dunkirk harbour. Powder Technol. 320, 748–764 (2017). https://doi.org/10.1016/j.powtec.2017.07.055

    Article  Google Scholar 

  39. Snellings, R., Cizer, Ö., Horckmans, L., Durdziński, P.T., Dierckx, P., Nielsen, P., Van Balen, K., Vandewalle, L.: Properties and pozzolanic reactivity of flash calcined dredging sediments. Appl. Clay Sci. 129, 35–39 (2016). https://doi.org/10.1016/j.clay.2016.04.019

    Article  Google Scholar 

  40. NF EN 196-1: Méthode d’essai des ciments- Partie 1 : Détermination des résistance (2016)

  41. Association Française de Normalisation (AFNOR): NF EN 196-6 : Méthodes d’essai des ciments - Détermination de la finesse (2018)

  42. Association Française de Normalisation (AFNOR): NF EN 1097-7 : Détermination de la masse volumique absolue du filler - Méthode au pycnomètre (2008)

  43. Association Française de Normalisation (AFNOR): NF EN 196-2 : Methods of testing cement - Part 2 : Chemical analysis of cement

  44. Amar, M.: Étude expérimentale et numérique de la valorisaion des sédiments de dragage dans les matrices cimentaires - Thèse de doctorat (2017)

  45. Faure, A.: Capacité d ’ un sédiment à se substituer à la fraction argileuse de la matière première de l ’ industrie des liants hydrauliques - Thèse de doctorat (2017)

  46. Msinjili, N.S., Gluth, G.J.G., Sturm, P., Vogler, N.: Comparison of calcined illitic clays (brick clays) and low- grade kaolinitic clays as supplementary cementitious materials. Mater. Struct. (2019). https://doi.org/10.1617/s11527-019-1393-2

    Article  Google Scholar 

  47. NF EN 12457-2 : Lixiviation - Essai de conformité pour lixiviation des déchets fragmentés et des boues - Partie 2 : Essai en Bâchée unique avec un rapport liquide -solide de 10 l/kg et une granularité inférieure à 4 mm

  48. Mohammed, S.: Processing, effect and reactivity assessment of artificial pozzolans obtained from clays and clay wastes: a review. Constr. Build. Mater. 140, 10–19 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.078

    Article  Google Scholar 

  49. NF EN 196-5 : Méthodes d’essais des ciment - Partie 5 : Essai de pouzzolanicité des ciments pouzzolaniques (2013)

  50. Deboucha, W., Leklou, N., Khelidj, A., Oudjit, M.N.: Hydration development of mineral additives blended cement using thermogravimetric analysis (TGA): methodology of calculating the degree of hydration. Constr. Build. Mater. 146, 687–701 (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.132

    Article  Google Scholar 

  51. Cassagnabère, F., Mouret, M., Escadeillas, G.: Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties. Cem. Concr. Res. 39, 1164–1173 (2009). https://doi.org/10.1016/j.cemconres.2009.07.023

    Article  Google Scholar 

  52. Klimesch, D.S., Ray, A.: Use of the second-derivative differential thermal curve in the evaluation of cement-quartz pastes with metakaolin addition autoclaved at 180°C. Thermochim. Acta 307, 167–176 (1997). https://doi.org/10.1016/S0040-6031(97)00409-7

    Article  Google Scholar 

  53. Chapleau, N., Mangavel, C., Compoint, J.P., de Lamballerie-Anton, M.: Effect of high-pressure processing on myofibrillar protein structure. Sci. Food Agric. 84, 66–74 (2003)

    Article  Google Scholar 

  54. Chu, D.C., Kleib, J., Amar, M., Benzerzour, M., Abriak, N.-E.: Determination of the degree of hydration of Portland cement using three different approaches: scanning electron microscopy (SEM-BSE) and Thermogravimetric analysis (TGA). Case Stud. Constr. Mater. 15, e00754 (2021). https://doi.org/10.1016/j.cscm.2021.e00754

    Article  Google Scholar 

  55. Skaropoulou, A., Sotiriadis, K., Kakali, G., Tsivilis, S.: Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cem. Concr. Compos. 37, 267–275 (2013). https://doi.org/10.1016/j.cemconcomp.2013.01.007

    Article  Google Scholar 

  56. Faure, A., Smith, A., Coudray, C., Anger, B., Colina, H., Moulin, I., Thery, F.: Ability of two dam fine-grained sediments to be used in cement industry as raw material for clinker production and as pozzolanic additional constituent of portland-composite cement. Waste Biomass Valoriz. 8, 2141–2163 (2017). https://doi.org/10.1007/s12649-017-9870-8

    Article  Google Scholar 

  57. Sabine, C.: Effet des additions minérales sur les propriétés d’usage des bétons : Plan d’expérience et analyse statique (2000)

  58. Feldman, R.F., Ramachandran, V.S., Sereda, P.J.: Influence of CaCO3 on the Hydration of 3CaO·Al2O3. J. Am. Ceram. Soc. 48, 25–30 (1965). https://doi.org/10.1111/j.1151-2916.1965.tb11787.x

    Article  Google Scholar 

  59. SETRA/LCPC: Guide technique: Traitement des sols à la chaux et/ou aux liants hydrauliques Application à la réalisation (2000)

  60. Arliguie, G., Grandet, J.: Etude de l’hydratation du ciment en presence de zinc influence de la teneur en gypse. Cem. Concr. Res. 20, 346–354 (1990). https://doi.org/10.1016/0008-8846(90)90023-Q

    Article  Google Scholar 

  61. Gineys, N., Aouad, G., Damidot, D.: Managing trace elements in Portland cement - Part II: comparison of two methods to incorporate Zn in a cement. Cem. Concr. Compos. 33, 629–636 (2011). https://doi.org/10.1016/j.cemconcomp.2011.03.008

    Article  Google Scholar 

  62. Young, J.F.: Reaction mechanisms of organic admixtures with hydrating cement compounds. Transp. Res. Rec. 564, 1–9 (1976)

    Google Scholar 

  63. Pollard, S.J.T., Montgomery, D.M., Sollars, C.J., Perry, R.: Organic compounds in the cement-based stabilisation/solidification of hazardous mixed wastes-Mechanistic and process considerations. J. Hazard. Mater. 28, 313–327 (1991). https://doi.org/10.1016/0304-3894(91)87082-D

    Article  Google Scholar 

  64. Han, F., Liu, R., Wang, D., Yan, P.: Characteristics of the hydration heat evolution of composite binder at different hydrating temperature. Thermochim. Acta 586, 52–57 (2014). https://doi.org/10.1016/j.tca.2014.04.010

    Article  Google Scholar 

  65. Oey, T., Kumar, A., Bullard, J.W., Neithalath, N., Sant, G.: The filler effect: the influence of filler content and surface area on cementitious reaction rates. J. Am. Ceram. Soc. 96, 1978–1990 (2013). https://doi.org/10.1111/jace.12264

    Article  Google Scholar 

  66. Wang, L., Guo, F., Lin, Y., Yang, H., Tang, S.W.: Comparison between the effects of phosphorous slag and fly ash on the C-S-H structure, long-term hydration heat and volume deformation of cement-based materials. Constr. Build. Mater. 250, 118807 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118807

    Article  Google Scholar 

  67. Tang, S., Wang, Y., Geng, Z., Xu, X., Yu, W., Hubao, A., Chen, J.: Structure, fractality, mechanics and durability of calcium silicate hydrates. Fractal Fract. 5, 47 (2021). https://doi.org/10.3390/fractalfract5020047

    Article  Google Scholar 

  68. Féret: Sur la compacité des mortiers. Annales des Ponts et Chaussées Série 7(4), 5–164 (1892)

  69. Berodier, E., Scrivener, K.: Evolution of pore structure in blended systems. Cem. Concr. Res. 73, 25–35 (2015). https://doi.org/10.1016/j.cemconres.2015.02.025

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the SEDICIM project and the FEDER funds for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc Chinh Chu.

Ethics declarations

Conflict of interest

The authors declare that they do not know of any competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, D.C., Amar, M., Kleib, J. et al. The Pozzolanic Activity of Sediments Treated by the Flash Calcination Method. Waste Biomass Valor 13, 4963–4982 (2022). https://doi.org/10.1007/s12649-022-01789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01789-8

Keywords

Navigation