Skip to main content
Log in

Enhancement of Food Waste Thermophilic Anaerobic Digestion with Supplementing Spent Mushroom Substrate: Synergistic Effect and Stability

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In order to explore the co-digestion performance of food waste (FW) and spent mushroom substrate (SMS) under high temperature anaerobic conditions, the effects of FW and SMS co-digestion at different mixing ratios on methane production were investigated. Results shown that the co-digestion of FW and SMS had a positive synergistic effect [synergy index (SI) = 106.87–131.09% > 100%], and when the mixing ratio of FW/SMS (volatile solid basis) was 7:3, the methane production of the co-digestion system increased by 15.92% and 69% compared with the single fermentation of FW and SMS, respectively. Simulation results of first-order kinetic model and modified Gompertz model shown that the co-digestion of FW and SMS exhibited the highest hydrolysis rate constant (0.102 day-1) and shortest lag-phase time (4.90 days). Experimental results also demonstrate that co-digestion had lower total/free ammonia nitrogen, suitable pH and alkalinity value, and faster system stability compared with single fermentation. Therefore, co-digestion of FW and SMS to produce methane has certain technical feasibility.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Fu, M.M., Mo, C.H., Li, H., Zhang, Y.N., Huang, W.X., Wong, M.H.: Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. J. Clean. Prod. 236, 117637 (2019). https://doi.org/10.1016/j.jclepro.2019.117637

    Article  Google Scholar 

  2. Sposob, M., Moon, H.S., Lee, D., Kim, T.H., Yun, Y.M.: Comprehensive analysis of the microbial communities and operational parameters of two full-scale anaerobic digestion plants treating food waste in South Korea: seasonal variation and effect of ammonia. J. Hazard. Mater. 398, 122975 (2020). https://doi.org/10.1016/j.jhazmat.2020.122975

    Article  Google Scholar 

  3. Zhang, B., Gao, M., Geng, J., Cheng, Y., Wang, X., Wu, C., Wang, Q., Liu, S., Cheung, S.: Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid–acid catalyst in an esterification reaction. Renew. Energy 164, 824–832 (2020). https://doi.org/10.1016/j.renene.2020.09.076

    Article  Google Scholar 

  4. Ma, Y., Liu, Y.: Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol. Adv. 37, 107414 (2019). https://doi.org/10.1016/j.biotechadv.2019.06.013

    Article  Google Scholar 

  5. Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q.: A comprehensive review on food waste anaerobic digestion: research updates and tendencies. Bioresour. Technol. 247, 1069–1076 (2018). https://doi.org/10.1016/j.biortech.2017.09.109

    Article  Google Scholar 

  6. Bao, H., Yang, H., Zhang, H., Liu, Y., Su, H., Shen, M.: Improving methane productivity of waste activated sludge by ultrasound and alkali pretreatment in microbial electrolysis cell and anaerobic digestion coupled system. Environ. Res. 180, 108863 (2019). https://doi.org/10.1016/j.envres.2019.108863

    Article  Google Scholar 

  7. Gu, J., Liu, R., Cheng, Y., Stanisavljevic, N., Li, L., Djatkov, D., Peng, X., Wang, X.: Anaerobic co-digestion of food waste and sewage sludge under mesophilic and thermophilic conditions: focusing on synergistic effects on methane production. Bioresour. Technol. 301, 122765 (2020). https://doi.org/10.1016/j.biortech.2020.122765

    Article  Google Scholar 

  8. Arenas, C.B., Meredith, W., Snape, C.E., Gómez, X., González, J.F., Martinez, E.J.: Effect of char addition on anaerobic digestion of animal by-products: evaluating biogas production and process performance. Environ. Sci. Pollut. Res. 27, 24387–24399 (2020). https://doi.org/10.1007/s11356-020-08828-8

    Article  Google Scholar 

  9. Ma, X., Yu, M., Yang, M., Gao, M., Wu, C., Wang, Q.: Synergistic effect from anaerobic co-digestion of food waste and Sophora flavescens residues at different co-substrate ratios. Environ. Sci. Pollut. Res. 26, 37114–37124 (2019). https://doi.org/10.1007/s11356-019-06399-x

    Article  Google Scholar 

  10. Gao, M., Yang, M., Ma, X., Xie, D., Wu, C., Wang, Q.: Effect of co-digestion of tylosin fermentation dreg and food waste on anaerobic digestion performance. Bioresour. Technol. 325, 124693 (2021). https://doi.org/10.1016/j.biortech.2021.124693

    Article  Google Scholar 

  11. Helenas Perin, J.K., Biesdorf Borth, P.L., Torrecilhas, A.R., Santana da Cunha, L., Kuroda, E.K., Fernandes, F.: Optimization of methane production parameters during anaerobic co-digestion of food waste and garden waste. J. Clean. Prod. 272, 123130 (2020). https://doi.org/10.1016/j.jclepro.2020.123130

    Article  Google Scholar 

  12. David, A., Govil, T., Tripathi, A.K., McGeary, J., Farrar, K., Sani, R.K.: Thermophilic anaerobic digestion: enhanced and sustainable methane production from co-digestion of food and lignocellulosic wastes. Energies 11, 2058 (2018). https://doi.org/10.3390/en11082058

    Article  Google Scholar 

  13. Baek, G., Kim, D., Kim, J., Kim, H., Lee, C.: Treatment of cattle manure by anaerobic co-digestion with food waste and pig manure: methane yield and synergistic effect. Int. J. Environ. Res. Public. Health. 17, 1–13 (2020). https://doi.org/10.3390/ijerph17134737

    Article  Google Scholar 

  14. Cheng, H., Li, Y., Guo, G., Zhang, T., Qin, Y., Hao, T., Li, Y.Y.: Advanced methanogenic performance and fouling mechanism investigation of a high-solid anaerobic membrane bioreactor (AnMBR) for the co-digestion of food waste and sewage sludge. Water. Res. 187, 116436 (2020). https://doi.org/10.1016/j.watres.2020.116436

    Article  Google Scholar 

  15. Pang, H., He, J., Ma, Y., Pan, X., Zheng, Y., Yu, H., Yan, Z., Nan, J.: Enhancing volatile fatty acids production from waste activated sludge by a novel cation-exchange resin assistant strategy. J. Clean. Prod. 278, 123236 (2021). https://doi.org/10.1016/j.jclepro.2020.123236

    Article  Google Scholar 

  16. Pankaj, K., Vinod, K., Jogendra, S., Piyush, K.: Electrokinetic assisted anaerobic digestion of spent mushroom substrate supplemented with sugar mill wastewater for enhanced biogas production. Renew. Energy 179, 418–426 (2021). https://doi.org/10.1016/j.renene.2021.07.045

    Article  Google Scholar 

  17. Niu, Q., Qiao, W., Qiang, H., Hojo, T., Li, Y.Y.: Mesophilic methane fermentation of chicken manure at a wide range of ammonia concentration: stability, inhibition and recovery. Bioresour. Technol. 137, 358–367 (2013). https://doi.org/10.1016/j.biortech.2013.03.080

    Article  Google Scholar 

  18. Zou, H., Gao, M., Wang, Q., Zhang, W., Wu, C., Song, N.: Metabolic analysis of efficient methane production from food waste with ethanol pre-fermentation using carbon isotope labeling. Bioresour. Technol. 291, 121849 (2019). https://doi.org/10.1016/j.biortech.2019.121849

    Article  Google Scholar 

  19. Zou, H., Gao, M., Yu, M., Zhang, W., Zhang, S., Wu, C., Tashiro, Y., Wang, Q.: Methane production from food waste via mesophilic anaerobic digestion with ethanol pre-fermentation: methanogenic pathway and microbial community analyses. Bioresour. Technol. 297, 122450 (2020). https://doi.org/10.1016/j.biortech.2019.122450

    Article  Google Scholar 

  20. Gao, M., Zhang, S., Ma, X., Guan, W., Song, N., Wang, Q., Wu, C.: Effect of yeast addition on the biogas production performance of a food waste anaerobic digestion system: yeast addition in anaerobic digestion. R. Soc. Open. Sci. 7, 200443 (2020). https://doi.org/10.1098/rsos.200443rsos200443

    Article  Google Scholar 

  21. Wu, C., Wang, Q., Yu, M., Zhang, X., Song, N., Chang, Q., Gao, M., Sonomoto, K.: Effect of ethanol pre-fermentation and inoculum-to-substrate ratio on methane yield from food waste and distillers’ grains. Appl. Energy. 155, 846–853 (2015). https://doi.org/10.1016/j.apenergy.2015.04.081

    Article  Google Scholar 

  22. Labatut, R.A., Angenent, L.T., Scott, N.R.: Biochemical methane potential and biodegradability of complex organic substrates. Bioresour. Technol. 102, 2255–2264 (2011). https://doi.org/10.1016/j.biortech.2010.10.035

    Article  Google Scholar 

  23. Zhen, G., Lu, X., Kobayashi, T., Li, Y.Y., Xu, K., Zhao, Y.: Mesophilic anaerobic co-digestion of waste activated sludge and Egeria densa: performance assessment and kinetic analysis. Appl. Energy 148, 78–86 (2015). https://doi.org/10.1016/j.apenergy.2015.03.038

    Article  Google Scholar 

  24. Kafle, G.K., Kim, S.H., Sung, K.I.: Ensiling of fish industry waste for biogas production: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour. Technol. 127, 326–336 (2013). https://doi.org/10.1016/j.biortech.2012.09.032

    Article  Google Scholar 

  25. Chuenchart, W., Logan, M., Leelayouthayotin, C., Visvanathan, C.: Enhancement of food waste thermophilic anaerobic digestion through synergistic effect with chicken manure. Biomass Bioenerg. 136, 105541 (2020). https://doi.org/10.1016/j.biombioe.2020.105541

    Article  Google Scholar 

  26. Zhang, L., Li, F., Kuroki, A., Loh, K.C., Wang, C.H., Dai, Y., Tong, Y.W.: Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: semi-continuous operation and microbial community analysis. Bioresour. Technol. 302, 122892 (2020). https://doi.org/10.1016/j.biortech.2020.122892

    Article  Google Scholar 

  27. Ebner, J.H., Labatut, R.A., Lodge, J.S., Williamson, A.A., Trabold, T.A.: Anaerobic co-digestion of commercial food waste and dairy manure: characterizing biochemical parameters and synergistic effects. Waste. Manag. 52, 286–294 (2016). https://doi.org/10.1016/j.wasman.2016.03.046

    Article  Google Scholar 

  28. Gao, X., Tang, X., Zhao, K., Balan, V., Zhu, Q.: Biogas production from anaerobic co-digestion of spent mushroom substrate with different livestock manure. Energies 14, 570 (2021). https://doi.org/10.3390/en14030570

    Article  Google Scholar 

  29. Luo, X., Yuan, X., Wang, S., Sun, F., Hou, Z., Hu, Q., Zhai, L., Cui, Z., Zou, Y.: Methane production and characteristics of the microbial community in the co-digestion of spent mushroom substrate with dairy manure. Bioresour. Technol. 250, 611–620 (2018). https://doi.org/10.1016/j.biortech.2017.11.088

    Article  Google Scholar 

  30. Grübel, K., Suschka, J.: Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process. Environ. Sci. Pollut. Res. 22, 7258–7270 (2015). https://doi.org/10.1007/s11356-014-3705-y

    Article  Google Scholar 

  31. Li, Y., Jin, Y., Li, J., Chen, Y., Gong, Y., Li, Y., Zhang, J.: Current situation and development of kitchen waste treatment in China. Proc. Environ. Sci. 31, 40–49 (2016). https://doi.org/10.1016/j.proenv.2016.02.006

    Article  Google Scholar 

  32. Jiang, Y., McAdam, E., Zhang, Y., Heaven, S., Banks, C., Longhurst, P.: Ammonia inhibition and toxicity in anaerobic digestion: a critical review. J. Water. Process. Eng. 32, 100899 (2019). https://doi.org/10.1016/j.jwpe.2019.100899

    Article  Google Scholar 

  33. Yin, Q., Gu, M., Wu, G.: Inhibition mitigation of methanogenesis processes by conductive materials: a critical review. Bioresour. Technol. 317, 123977 (2020). https://doi.org/10.1016/j.biortech.2020.123977

    Article  Google Scholar 

  34. Wang, Z., Jiang, Y., Wang, S., Zhang, Y., Hu, Y., Hu, Z., Wu, G., Zhan, X.: Impact of total solids content on anaerobic co-digestion of pig manure and food waste: Insights into shifting of the methanogenic pathway. Waste. Manag. 114, 96–106 (2020). https://doi.org/10.1016/j.wasman.2020.06.048

    Article  Google Scholar 

  35. Ma, X., Yu, M., Song, N., Xu, B., Gao, M., Wu, C., Wang, Q.: Effect of ethanol pre-fermentation on organic load rate and stability of semi-continuous anaerobic digestion of food waste. Bioresour. Technol. 299, 122587 (2020). https://doi.org/10.1016/j.biortech.2019.122587

    Article  Google Scholar 

  36. Yu, M., Wu, C., Wang, Q., Sun, X., Ren, Y., Li, Y.Y.: Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Bioresour. Technol. 248, 187–193 (2018). https://doi.org/10.1016/j.biortech.2017.07.013

    Article  Google Scholar 

  37. Ma, S., Wang, H., Li, J., Fu, Y., Zhu, W.: Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion. Energy 189, 116190 (2019). https://doi.org/10.1016/j.energy.2019.116190

    Article  Google Scholar 

  38. Karthikeyan, O.P., Visvanathan, C.: Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev. Environ. Sci. Biotechnol. 12, 257–284 (2013). https://doi.org/10.1007/s11157-012-9304-9

    Article  Google Scholar 

  39. Wu, C., Yu, M., Huang, Q., Ma, H., Gao, M., Wang, Q., Sakai, K.: Stimulation of methane yield rate from food waste by aerobic pre-treatment. Bioresour. Technol. 261, 279–287 (2018). https://doi.org/10.1016/j.biortech.2018.04.006

    Article  Google Scholar 

Download references

Acknowledgements

The support from Sino-US-Japan Joint Laboratory on Organic Solid Waste Resource and Energy Technology of USTB is appreciated. The authors gratefully acknowledge support for this study from the National Environmental and Energy Base for International Science & Technology Cooperation.

Funding

This research was financially supported by the National Key R&D Program of China (Grant Nos. 2018YFC1900903, 2018YFC1900904).

Author information

Authors and Affiliations

Authors

Contributions

XW and WG contributed to drafting the manuscript, planning, and performing the experiments. XM and SZ contributed to analyzing the data. QW contributed to reviewing and revising the manuscript. CW contributed to supervision and editing.

Corresponding author

Correspondence to Chuanfu Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Guan, W., Ma, X. et al. Enhancement of Food Waste Thermophilic Anaerobic Digestion with Supplementing Spent Mushroom Substrate: Synergistic Effect and Stability. Waste Biomass Valor 13, 2881–2888 (2022). https://doi.org/10.1007/s12649-022-01702-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01702-3

Keywords

Navigation