Skip to main content

Advertisement

Log in

The Effects of Jatropha curcas and Ricinus communis Seeds Addition on Coffee Pulp Waste Pellets as Fuel

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study aimed to analyze the effect of the addition of Ricinus communis and Jatropha curcas seeds in two mass percentages (10 and 30%) in coffee pulp waste feedstocks on the physical, chemical, and energetic properties, compressive strength, and durability. The results showed that the high ash content, low apparent density, and higher heating value (HHV) were biomass characteristics that limit pulp coffee for the thermochemical process. However, the mixing of J. curcas and R. communis seed with the coffee pulp improved the energy characteristics of pulp coffee pellets. The HHV was 16.79 MJ/kg for pellet fabricated with 100% of coffee pulp, but if the pellets were fabricated with 30% of oilseed, the HHV increased to 19.55 MJ/kg. The ash was not affected by the oilseed usage and the moisture content decreased from 12% for coffee pulp pellets to 8% with oilseed usage. The moisture absorption decreased too when the pellets were fabricated with the mixing between the coffee pulp waste and oilseed. The disadvantage of pellets’ fabrication with seed oil was that the bulk density, apparent density, compressive strength, and mechanical durability of the pellets were reduced.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used during the current work are available from the corresponding author request and in the Knowledge Network for Biocomplexity (KNB) at.

Bibliography

  1. Instituto Nacional de Estadística y Senso: VIII Censo Nacional Agropecuario: Atlas Estadístico Agropecuario. San José, Costa Rica (2017)

    Google Scholar 

  2. Mora, S., Ramírez, Y.: Boletín estadístico agropecuario N°29. San José, Costa Rica (2019)

    Google Scholar 

  3. Miñón-Fuentes, R., Aguilar-Juárez, O.: Hydrogen production from coffee pulp by dark fermentation. Water Sci. Technol. 80, 1692–1701 (2019). https://doi.org/10.2166/wst.2019.416

    Article  Google Scholar 

  4. Torres, C., Urvina, L., de Lasa, H.: A chemical equilibrium model for biomass gasification. Application to Costa Rican coffee pulp transformation unit. Biomass Bioenergy 123, 89–103 (2019). https://doi.org/10.1016/j.biombioe.2019.01.025

    Article  Google Scholar 

  5. Hejna, A.: Potential applications of by-products from the coffee industry in polymer technology—current state and perspectives. Waste Manag. 121, 296–330 (2021). https://doi.org/10.1016/j.wasman.2020.12.018

    Article  Google Scholar 

  6. Alemayehu, Y.A., Asfaw, S.L., Tirfie, T.A.: Management options for coffee processing wastewater. A review. J. Mater. Cycles Waste Manag. 22, 454–469 (2020). https://doi.org/10.1007/s10163-019-00953-y

    Article  Google Scholar 

  7. Manasa, V., Padmanabhan, A., Anu Appaiah, K.A.: Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Manag. 120, 762–771 (2021). https://doi.org/10.1016/j.wasman.2020.10.045

    Article  Google Scholar 

  8. Rattan, S., Parande, A.K., Nagaraju, V.D., Ghiwari, G.K.: A comprehensive review on utilization of wastewater from coffee processing. Environ. Sci. Pollut. Res. 22, 6461–6472 (2015). https://doi.org/10.1007/s11356-015-4079-5

    Article  Google Scholar 

  9. Ijanu, E.M., Kamaruddin, M.A., Norashiddin, F.A.: Coffee processing wastewater treatment: a critical review on current treatment technologies with a proposed alternative. Appl. Water Sci. 10, 11–19 (2020). https://doi.org/10.1007/s13201-019-1091-9

    Article  Google Scholar 

  10. Janissen, B., Huynh, T.: Chemical composition and value-adding applications of coffee industry by-products: a review. Resour. Conserv. Recycl. 128, 110–117 (2018). https://doi.org/10.1016/j.resconrec.2017.10.001

    Article  Google Scholar 

  11. Chacón, L., Coto, O., Flores, O.: Actualización de la encuesta de biomasa como insumo para su incorporación en la matriz energética de Costa Rica. San José, Costa Rica (2018)

    Google Scholar 

  12. Braghiroli, F.L., Passarini, L.: Valorization of biomass residues from forest operations and wood manufacturing presents a wide range of sustainable and innovative possibilities. Curr. For. Reports. 6, 172–183 (2020). https://doi.org/10.1007/s40725-020-00112-9

    Article  Google Scholar 

  13. Picchio, R., Latterini, F., Venanzi, R., Stefanoni, W., Suardi, A., Tocci, D., Pari, L.: Pellet production from woody and non-woody feedstocks: a review on biomass quality evaluation. Energies 13, 2937 (2020). https://doi.org/10.3390/en13112937

    Article  Google Scholar 

  14. Twinomuhwezi, H., Wozeyi, P., Igwe, V.S., Amagwula, I.O., Awuchi, C.G.: Heat of combustion of coffee pulp and husks as alternative sources of renewable energy. Eur. J. Agric. Food Sci. 3, 1–4 (2021)

    Google Scholar 

  15. Limousy, L., Jeguirim, M., Labaki, M.: Energy applications of coffee processing by-products. In: Galanakis, C.M. (ed.) Handbook of coffee processing by-products, pp. 323–367. Academic Press, Sustainable Applications (2017). https://doi.org/10.1016/B978-0-12-811290-8.00011-6

    Chapter  Google Scholar 

  16. Cubero-Abarca, R., Moya, R., Valaret, J., Tomaselo-Filho, M.: Use of coffee (Coffea arabica) pulp for the production of briquettes and pellets for heat generation. Cienc. e Agrotecnologia. 38(5), 461–470 (2014). https://doi.org/10.1590/S1413-70542014000500005

    Article  Google Scholar 

  17. Jeguirim, M., Limousy, L., Fossard, E.: Characterization of coffee residues pellets and their performance in a residential combustor. Int. J. Green Energy. 13, 608–615 (2016). https://doi.org/10.1080/15435075.2014.888664

    Article  Google Scholar 

  18. Park, S., Kim, S.J., Oh, K.C., Cho, L., Kim, M.J., Jeong, I.S., Lee, C.G., Kim, D.H.: Investigation of agro-byproduct pellet properties and improvement in pellet quality through mixing. Energy 190, 116380 (2020). https://doi.org/10.1016/j.energy.2019.116380

    Article  Google Scholar 

  19. Faria, W., Protásio, T., Trugilho, P., Pereira, B., Carneiro, A., Andrade, C., Guimarães, J.: Transformação dos resíduos lignocelulósicos da cafeicultura em Pellets para geração de energia Térmica. Coffee Sci. 11, 137–147 (2016)

    Google Scholar 

  20. DIN: Testing of solid fuels—compressed untreated wood—requirements and testing. Deutsches Institut für Normung, Berlin, Germany (1996)

    Google Scholar 

  21. Marrugo, G., Valdés, C.F., Gómez, C., Chejne, F.: Pelletizing of Colombian agro-industrial biomasses with crude glycerol. Renew. Energy. 134, 558–568 (2019). https://doi.org/10.1016/j.renene.2018.11.004

    Article  Google Scholar 

  22. Olugbade, T., Ojo, O., Mohammed, T.: Influence of binders on combustion properties of biomass briquettes: a recent review. BioEnergy Res. 12(2), 241–259 (2019). https://doi.org/10.1007/s12155-019-09973-w

    Article  Google Scholar 

  23. Emami, S., Tabil, L.G., Adapa, P.: Effect of glycerol on densification of agricultural biomass. Int. J. Agric. Biol. Eng. 8, 64–73 (2015). https://doi.org/10.3965/j.ijabe.20150801.009

    Article  Google Scholar 

  24. Lazo, M.: Estudio de la producción de pellets a partir de borra de café, Tesis de Licenciatura. Universidad Nacional de Colombia, Bogota, Colombia (2018)

    Google Scholar 

  25. Wakandigara, A., Nhamo, L., Kugara, J.: Chemistry of phorbol ester toxicity in Jatropha curcas seed—a review. Int. J. Biochem. Res. 3, 146–161 (2013)

    Article  Google Scholar 

  26. Jingura, R.M., Kamusoko, R.: Technical options for valorisation of Jatropha press-cake: a review. Waste Biomass Valor. 9, 701–713 (2018). https://doi.org/10.1007/s12649-017-9837-9

    Article  Google Scholar 

  27. Sánchez, M., Castañeda, R., Castañeda, M.: Usos y potencialidad de la Higuerilla (Ricinus communis) en sistemas agroforestales en Colombia. PUBVET 10, 448–512 (2016)

    Article  Google Scholar 

  28. Vasco, J., Hernández, I., Méndez, S., Ventura, E., Cuellar, M., Mosquera, J.: Relación entre la composición química de la semilla y la calidad de aceite de doce accesiones de Ricinus communis L. Rev. Mex. Ciencias Agrícolas. 8, 1343–1356 (2017)

    Article  Google Scholar 

  29. Makhlouf, K., Hamrouni, L., Khouja, M.L., Hanana, M.: Notes ethnobotanique et phytopharmacologique sur Ricinus communis L. Phytothérapie 8, 374–376 (2010). https://doi.org/10.1007/s10298-010-0591-4

    Article  Google Scholar 

  30. Sandi, J., Mata-Araya, I., Aguilar, F.: Diversity of lipase-producing microorganisms from tropical oilseeds Elaeis guineensis, Ricinus communis, and Jatropha curcas L. from Costa Rica. Curr. Microbiol. 77, 943–952 (2020). https://doi.org/10.1007/s00284-020-01886-8

    Article  Google Scholar 

  31. Torrentes-Espinoza, G., Miranda, B.C., Vega-Baudrit, J., Mata-Segreda, J.F.: Castor oil (Ricinus communis) supercritical methanolysis. Energy 140, 426–435 (2017). https://doi.org/10.1016/j.energy.2017.08.122

    Article  Google Scholar 

  32. Abdelgadir, H.A., Van Staden, J.: Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. South African J. Bot. 88, 204–218 (2013). https://doi.org/10.1016/j.sajb.2013.07.021

    Article  Google Scholar 

  33. Elijah, J.P., Chukwuka, S.R., Arazu, A.V., Godfrey, N., Ogwuegbu, M.C., Cosmas, S.: Phytochemical and toxicity analysis of Ricinus communis. Asian J. Biol. 10(3), 34–41 (2020). https://doi.org/10.9734/ajob/2020/v10i330109

    Article  Google Scholar 

  34. ASTM (American Society for Testing and Materials): Standard test methods for direct moisture content measurement of wood and wood-based materials. Annu. B. ASTM Stand. 4.10. ASTM D4442 (2016). https://doi.org/10.1520/D4442-16.

  35. ASTM (American Society for Testing and Materials): Standard test method for gross calorific value of coal and coke ASTM D5865. Annu. B. ASTM Stand. 4.10 (2013). https://doi.org/10.1520/D5865-13.

  36. ASTM (American Society for Testing and Materials): Standard test method for ash in wood, ASTM D1102-84. Annu. B. ASTM Stand. 4.10 (2013). https://doi.org/10.1520/D1102-84R13.1.

  37. ASTM (American Society for Testing and Materials): Standard test method for chemical analysis of wood charcoal, ASTM D1862. Annu. B. ASTM Stand. 4.10 (2013). https://doi.org/10.1520/10.1520/D1762-84R21

  38. TAPPI: Standard test for ACI-insoluble lignin in wood and pulp, TaPPI. T 222 om-0 (2002).

  39. ASTM (American Society for Testing and Materials): Standard test methods for water solubility of wood ASTM D1110–84. Annu. B. ASTM Stand. 4.10 (2013). https://doi.org/10.1520/D1110-84R13.2.

  40. ASTM (American Society for Testing and Materials): Standard test method for ethanol-toluene solubility of wood, Annu. B. ASTM Stand. Sect. 4, Constr. 04.09, Wood. ASTM D1107 Annu. B. ASTM Stand. 4.10 (2013). https://doi.org/10.1520/D1107-21

  41. DD, CEN/TS 15210–1: Solid biofuels. Method for the determination of mechanical durability of pellets and briquettes. Part 1: Pellets (2004).

  42. Aarseth, K.A., Prestløkken, E.: Mechanical properties of feed pellets: Weibull analysis. Biosyst. Eng. 84, 349–361 (2003). https://doi.org/10.1016/S1537-5110(02)00264-7

    Article  Google Scholar 

  43. Mani, S., Tabil, L.G., Sokhansanj, S.: Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass Bioenerg. 30, 648–654 (2006). https://doi.org/10.1016/j.biombioe.2005.01.004

    Article  Google Scholar 

  44. Lehtikangas, P.: Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenerg. 20, 351–360 (2001). https://doi.org/10.1016/S0961-9534(00)00092-1

    Article  Google Scholar 

  45. Kaliyan, N., Morey, R.: Factors affecting strength and durability of densified biomass products. Biomass Bioenerg. 33, 337–359 (2009). https://doi.org/10.1016/j.biombioe.2008.08.005

    Article  Google Scholar 

  46. Fierro, N., Contreras, A., González, O., Rosas, E., Morales, V.: Caracterización química y nutrimental de la pulpa de café (Coffea Arabica L.). Agroproductividad 11, 9–13 (2018)

    Google Scholar 

  47. Ortiz, A.: Composición química de Jatropha curcas. Universidad Autónoma De Querétaro, tesis de Licentura, Querétaro-Mexico (2012)

    Google Scholar 

  48. Moya, R., Tenorio, C.: Fuelwood characteristics and its relation with extractives and chemical properties of ten fast-growth species in Costa Rica. Biomass Bioenerg. 56, 14–21 (2013). https://doi.org/10.1016/j.biombioe.2013.04.013

    Article  Google Scholar 

  49. Castillo, A.: Determinación de parámetros fisicoquímicos y cinéticos de la degradación térmica de broza y cascarilla de café para ser utilizados en simulaciones computacionales del proceso de gasificación. Universidad del Costa Rica, Tesis de Licenciatura. Facueltad de Ingeniería Química (2014)

    Google Scholar 

  50. Sokoto, A.M., Bhaskar, T.: Pyrolysis of waste castor seed cake: a Thermo-Kinetics study. Eur. J. Sustain. Dev. Res. 2(2), 18 (2018)

    Article  Google Scholar 

  51. Sankar, S., Kumar, S., Panda, A., Singh, R.: Valorization of Jatropha seed to fuel and chemical feedstock using a thermochemical conversion process. Biofuels 7, 429–435 (2016). https://doi.org/10.1080/17597269.2016.1149767

    Article  Google Scholar 

  52. Gómez, C.: Evaluación de la incidencia de la zona geográfica de Costa Rica en la composición fisicoquímica de la broza de café para su potencial uso en sistemas de gasificación de lecho descendente. Universidad del Costa Rica, Tesis de Licenciatura. Facueltad de Ingeniería Química (2018)

    Google Scholar 

  53. Bedassa, T.: Chemical Composition, Bio-Diesel Potential and Uses of Jatropha curcas L. (Euphorbiaceae). Am. J. Agric. For. 4, 35–48 (2016)

    Google Scholar 

  54. Jamradloedluk, J., Lertsatitthanakorn, C.: Influences of mixing ratios and binder types on properties of biomass pellets. Energy Procedia. 138, 1147–1152 (2017). https://doi.org/10.1016/j.egypro.2017.10.223

    Article  Google Scholar 

  55. Cai, J., He, Y., Yu, X., Banks, S., Yang, Y., Zhang, X., Yu, Y., Liu, R., Bridgwater, A.: Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sustain. Energy Rev. 76, 309–322 (2017). https://doi.org/10.1016/j.rser.2017.03.072

    Article  Google Scholar 

  56. Cruz, R.: Coffee by-products: sustainable agro-industrial recovery and impact on vegetables quality. Universidade do Porto, Porto-Portugal, Tesis de Maestría (2014)

    Google Scholar 

  57. Mishra, R.K., Mohanty, K.: Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels. Biomass Convers. Biorefinery. 8, 799–812 (2018). https://doi.org/10.1007/s13399-018-0332-8

    Article  Google Scholar 

  58. Gottipati, R., Mishra, S.: A kinetic study on pyrolysis and combustion characteristics of oil cakes: effect of cellulose and lignin content. J. Fuel Chem. Technol. 39, 265–270 (2011). https://doi.org/10.1016/S1872-5813(11)60021-2

    Article  Google Scholar 

  59. Santos, N., Magriotis, Z., Saczk, A., Fássio, G., Vieira, S.: Kinetic study of pyrolysis of castor beans (Ricinus communis L.) presscake: an alternative use for solid waste arising from the biodiesel production. Energy Fuels. 29, 2351–2357 (2015). https://doi.org/10.1021/ef401933c

    Article  Google Scholar 

  60. Tenorio, C., Moya, R., Filho, M.T., Valaert, J.: Quality of pellets made from agricultural and forestry crops in costa rican tropical climates. BioResources 10, 482–498 (2015)

    Google Scholar 

  61. Parascanu, M.M., Sandoval-Salas, F., Soreanu, G., Valverde, J.L., Sanchez-Silva, L.: Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes. Renew. Sustain. Energy Rev. 71, 509–522 (2017). https://doi.org/10.1016/j.rser.2016.12.079

    Article  Google Scholar 

  62. Sricharoenchaikul, V., Atong, D.: Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor. J. Anal. Appl. Pyrolysis. 85, 155–162 (2009). https://doi.org/10.1016/j.jaap.2008.11.030

    Article  Google Scholar 

  63. Tenorio, C., Moya, R., Filho, M.T., Valaert, J.: Application of the X-ray densitometry in the evaluation of the quality and mechanical properties of biomass pellets. Fuel Process. Technol. 132, 62–73 (2015). https://doi.org/10.1016/j.fuproc.2014.12.040

    Article  Google Scholar 

  64. AENOR, Biocombustibles sólidos: Especificaciones y clases de combustibles Parte 6: Clases de pélets de origen no leñoso (EN ISO 17225–6:2014) (2014).

  65. S.S.I. SS: Biofuels and peat, fuel pellets. Classification (Swedish Standards Institution) (1998). https://www.sis.se/en/produkter/petroleum-and-related-technologies/fuels/solid-fuels/ss187120/. Accessed 11 June 2021.

  66. Moya-Roque, R., Tenorio-Monge, C.: Características de combustibilidad de diez especies de plantaciones de rápido crecimiento en Costa Rica. Rev. For. Mesoam. Kurú. 10, 26 (2013)

    Google Scholar 

  67. Balaguer-Benlliure, V., Moya, R., Gaitán-Alvarez, J.: Physical and energy characteristics, compression strength, and chemical modification of charcoal produced from sixteen tropical woods in Costa Rica. J. Sustain. Forest (2021). https://doi.org/10.1080/10549811.2021.1978096

    Article  Google Scholar 

  68. Fasina, O.O.: Physical properties of peanut hull pellets. Bioresour. Technol. 99, 1259–1266 (2008). https://doi.org/10.1016/j.biortech.2007.02.041

    Article  Google Scholar 

  69. Rhén, C., Gref, R., Sjöström, M., Wästerlund, I.: Effects of raw material moisture content, densification pressure and temperature on some properties of Norway spruce pellets. Fuel Process. Technol. 87, 11–16 (2005). https://doi.org/10.1016/j.fuproc.2005.03.003

    Article  Google Scholar 

  70. Whittaker, C., Shield, I.: Factors affecting wood, energy grass and straw pellet durability—a review. Renew. Sustain. Energy Rev. 71, 1–11 (2017). https://doi.org/10.1016/j.rser.2016.12.119

    Article  Google Scholar 

  71. Tarasov, D., Shahi, C., Leitch, M.: Effect of additives on wood pellet physical and thermal characteristics: a review. ISRN For. 2013, 1–6 (2013). https://doi.org/10.1155/2013/876939

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Vicerrectoría de Investigación y Extensión at the Instituto Tecnológico de Costa Rica (ITCR).

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft, visualization, writing—review and editing; investigation and methodology: EDJ; methodology, writing—review and editing, supervision, resources, review and editing: RM.

Corresponding author

Correspondence to Roger Moya.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest or competing interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors agree on a publication in Waste and Biomass Valorization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Jiménez, E., Moya, R. The Effects of Jatropha curcas and Ricinus communis Seeds Addition on Coffee Pulp Waste Pellets as Fuel. Waste Biomass Valor 13, 3071–3084 (2022). https://doi.org/10.1007/s12649-022-01701-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01701-4

Keywords

Navigation