Skip to main content
Log in

Effects of Calamus-Derived Biochar on the Thermophilic Anaerobic Digestion of Long-SRT Waste Activated Sludge from the Municipal Wastewater Treatment Plant

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In order to improve the efficiency of anaerobic digestion of long sludge retention time (SRT) sludge and seek a suitable disposal method for the massive plants harvested from constructed wetlands, we prepared Calamus-derived biochar (Calamus-BC) and added it to thermophilic anaerobic digestion (TAD) system of long SRT sludge. Moreover, the effect of Calamus-BC supplemental level (0, 5, 10, 15, 20 g/L) on TAD was explored through a series of batch experiments. Results showed that Calamus-BC addition can increase the conductivity and pH in TAD of long-SRT sludge obviously, thereby promoting methane production, reducing total VFAs accumulation and shortening the lag phases. When the Calamus-BC dosage was 15 g/L, the cumulative CH4 yield reached the highest 246.73 mL/g VS, which was 43.4% higher than the control group. Furthermore, it proved the modified Gompertz model was suitable for the actual evolution of CH4 production in TAD of long-SRT sludge. This study provided an alternative for efficient biomass stabilization and bioenergy recovery from long-SRT sludge and supplied a feasible resourceful approach for massive Calamus from constructed wetlands in water rehabilitation engineering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data for this study are available.

References

  1. Liu, H., Leng, F., Chen, P., Kueppers, S.: Pollutant removal characteristics of a two-influent-line BNR process performing denitrifying phosphorus removal: role of sludge recycling ratios. Water Sci. Technol. 74(10), 2474–2482 (2016). (In Shanghai, China). https://doi.org/10.2166/wst.2016.438

    Article  Google Scholar 

  2. Guang, Y., Guangming, Z., Hongchen, W.: Current state of sludge production, management, treatment and disposal in China. Water Res. 78, 60–73 (2015). https://doi.org/10.1016/j.watres.2015.04.002

    Article  Google Scholar 

  3. Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S.: Biogas production from organic waste: recent progress and perspectives. Waste Biomass Valoriz. 11, 1019–1040 (2020). https://doi.org/10.1007/s12649-018-00546-0

    Article  Google Scholar 

  4. Lafratta, M., Thorpe, R.B., Ouki, S.K., Shana, A., Germain, E., Willcocks, M., Jacquetta, L.: Demand-driven biogas production from anaerobic digestion of sewage sludge: application in demonstration scale. Waste Biomass Valoriz. 12, 6767–6780 (2021). https://doi.org/10.1007/s12649-021-01452-8

    Article  Google Scholar 

  5. Bi, S., Qiao, W., Xiong, L., Ricci, M., Adani, F., Dong, R.: Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions. Renew. Energy. 139, 242–250 (2019). https://doi.org/10.1016/j.renene.2019.02.083

    Article  Google Scholar 

  6. Li, J., Hao, X., Loosdrecht, M.V., Luo, Y., Cao, D.: Effect of humic acids on batch anaerobic digestion of excess sludge. Water Res. 155, 431–443 (2019). https://doi.org/10.1016/j.watres.2018.12.009

    Article  Google Scholar 

  7. Junior, I.V., Almeida, R.D., Cammarota, M.C.: A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants. J. Water Process. Eng. 40, 101857 (2020). https://doi.org/10.1016/J.JWPE.2020.101857

    Article  Google Scholar 

  8. Yang, L., Huang, Y., Zhao, M., Huang, Z., Miao, H., Xu, Z., Ruan, W.: Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int. Biodeterior. Biodegrad. 105, 153–159 (2015). https://doi.org/10.1016/j.ibiod.2015.09.005

    Article  Google Scholar 

  9. Mao, C., Feng, Y., Wang, X., Pinjing, H.: Review on research achievements of biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 45, 540–555 (2015). https://doi.org/10.1016/j.rser.2015.02.032

    Article  Google Scholar 

  10. Yeniguen, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process. Biochem. 48(5–6), 901–911 (2013). https://doi.org/10.1016/j.procbio.2013.04.012

    Article  Google Scholar 

  11. Beevi, B.S., Madhu, G., Sahoo, D.K.: Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste. Waste Manage. 36, 93–97 (2015). https://doi.org/10.1016/j.wasman.2014.09.024

    Article  Google Scholar 

  12. Shi, J., Wang, Z., Stiverson, J.A., Zhongtang, Y., Yebo, L.: Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour. Technol. 136, 574–581 (2013). https://doi.org/10.1016/j.biortech.2013.02.073

    Article  Google Scholar 

  13. Altinbas, M., Cicek, O.A.: Anaerobic co-digestion of chicken and cattle manures: free ammonia inhibition. Energy Sources 41(7–12), 1097–1109 (2019). https://doi.org/10.1080/15567036.2018.1539143

    Article  Google Scholar 

  14. Yang, Z., Wang, W., He, Y., Zhang, R., Liu, G.: Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditio-ns. Renew. Energy 125, 915–925 (2018). https://doi.org/10.1016/j.renene.2018.03.032

    Article  Google Scholar 

  15. Nakashimada, Y., Ohshima, Y., Minami, H., Yabu, H., Nishio, N.N.: Ammonia–methane two-stage anaerobic digestion of dehydrated waste-activated sludge. Appl. Microbiol. Biotechnol. 79, 1061–1069 (2008). https://doi.org/10.1007/s00253-008-1501-7

    Article  Google Scholar 

  16. Moestedt, J., Müller, B., Westerholm, M., Anna, S.: Ammonia threshold for inhibition of anaerobic digestion of thin stillage and the importance of organic loading rate. Microb. Biotechnol. 9(2), 180–194 (2016). https://doi.org/10.1111/1751-7915.12330

    Article  Google Scholar 

  17. Ryue, J., Lin, L., Kakar, F.L., Elbeshbishy, E., Al-Mamun, A., Dhar, B.R.: A critical review of conventional and emerging methods for improving process stability in thermophilic anaerobic digestion. Energy. Sustain. Dev. 54, 72–84 (2020). https://doi.org/10.1016/j.esd.2019.11.001

    Article  Google Scholar 

  18. Masahiko, M., Malvankar, N.S., Franks, A.E., Summers, Z.M., Lovley, D.R.: Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2(4), e00159 (2011). https://doi.org/10.1128/mBio.00159-11

    Article  Google Scholar 

  19. Zhao, Z., Zhang, Y., Yu, Q., Dang, Y., Li, Y., Quan, X.: Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate. Water Res. 102, 475–484 (2016). https://doi.org/10.1016/j.watres.2016.07.005

    Article  Google Scholar 

  20. Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Ibeto, C.N., Semple, K.T.: The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manage. 61, 236–249 (2017). https://doi.org/10.1016/j.wasman.2016.11.028

    Article  Google Scholar 

  21. Lei, Y., Wei, L., Liu, T., Xiao, Y., Dang, Y., Sun, D., Holmes, D.E.: Magnetite enhances anaerobic digestion and methanogenesis of fresh leachate from a municipal solid waste incineration plant. Chem. Eng. J. 348, 992–999 (2018). https://doi.org/10.1016/j.cej.2018.05.060

    Article  Google Scholar 

  22. Zhao, Z., Zhang, Y., Li, Y., Dang, Y., Zhu, T., Quan, X.: Potentially shifting from interspecies hydrogen transfer to direct interspecies electron transfer for syntrophic metabolism to resist acidic impact with conductive carbon cloth. Chem. Eng. J. 313, 10–18 (2017). https://doi.org/10.1016/j.cej.2016.11.149

    Article  Google Scholar 

  23. González, J., Sánchez, M., Gómez, X.: Enhancing anaerobic digestion: the effect of carbon conductive materials. C J. Carbon Res. 4(59), 1–19 (2018). https://doi.org/10.3390/c4040059

    Article  Google Scholar 

  24. Fagbohungbe, M.O., Herbert, B.M.J., Hurst, L., Ibeto, C.N., Li, H., Usmani, S.Q., Semple, K.T.: The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manage. 61, 236–249 (2017). https://doi.org/10.1016/j.wasman.2016.11.028

    Article  Google Scholar 

  25. Xu, H., Chang, J., Wang, H., Liu, Y., Zhang, X., Liang, Y., Huang, X.: Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi) conductive iron oxides: effects and mechanisms. Sci. Total Environ. 695, 133876 (2019). https://doi.org/10.1016/j.scitotenv.2019.133876

    Article  Google Scholar 

  26. Shen, Y., Linville, J.L., Leon, I.D., Schoene, R.P., Urgun-Demirtas, M.: Towards a sustainable paradigm of waste-to-energy process: enhanced anaerobic digestion of sludge with woody biochar. J. Clean. Prod. 135, 1054–1064 (2016). https://doi.org/10.1016/j.jclepro.2016.06.144

    Article  Google Scholar 

  27. Zhang, H., Tang, W., Wang, W., Yin, W., Zha, J.: A review on China’s constructed wetlands in recent three decades: application and practice. J. Environ. Sci. 104(6), 53–68 (2020). https://doi.org/10.1016/j.jes.2020.11.032

    Article  Google Scholar 

  28. Andriamanohiarisoamanana, F.J., Saikawa, A., Tarukawa, K., Qi, G., Pan, Z., Yamashiro, T., Iwasaki, M., Ihara, I., Nishida, T., Umetsu, K.: Anaerobic co-digestion of dairy manure, meat and bone meal, and crude glycerol under mesophilic conditions: synergistic effect and kinetic studies. Energy Sustain. Dev. 40, 11–18 (2017). https://doi.org/10.1016/j.esd.2017.05.008

    Article  Google Scholar 

  29. Xiong, S., Deng, Y., Tang, R., Zhang, C., Zheng, J., Zhang, Y., Su, L., Yang, L., Liao, C., Gong, D.: Factors study for the removal of epoxiconazole in water by common biochars. Biochem. Eng. J. 161, 107690 (2020). https://doi.org/10.1016/j.bej.2020.107690

    Article  Google Scholar 

  30. Luo, C., Lü, F., Shao, L., He, P.: Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res. 68, 710–718 (2015). https://doi.org/10.1016/j.watres.2014.10.052

    Article  Google Scholar 

  31. Zhao, Z., Zhang, Y., Holmes, D.E., Dang, Y., Woodard, T.L., Nevin, K.P., Lovley, D.R.: Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors. Bioresour. Technol. 209, 148–156 (2016). https://doi.org/10.1016/j.biortech.2016.03.005

    Article  Google Scholar 

  32. Wang, G., Li, Q., Gao, X., Wang, X.: Sawdust-derived biochar much mitigates VFAs accumulation and improves microbial activities to enhance methane production in thermophilic anaerobic digestion. ACS Sustain. Chem. Eng. 7, 2141–2150 (2018). https://doi.org/10.1021/acssuschemeng.8b04789

    Article  Google Scholar 

  33. Shen, Y., Linville, J.L., Urgun-Demirtas, M., Schoene, R.P., Snyder, S.W.: Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2 removal. Appl. Energy 158, 300–309 (2015). https://doi.org/10.1016/j.apenergy.2015.08.016

    Article  Google Scholar 

  34. Jang, H.M., Choi, Y.K., Kan, E.: Effects of dairy manure-derived biochar on psychrophilic, mesophilic and thermophilic anaerobic digestions of dairy manure. Bioresour. Technol. 250, 927–931 (2017). https://doi.org/10.1016/j.biortech.2017.11.074

    Article  Google Scholar 

  35. Siddique, M.N.I., Wahi, Z.A.: Achievements and perspectives of anaerobic co-digestion: a review. J. Clean. Prod. 194, 359–371 (2018). https://doi.org/10.1016/j.jclepro.2018.05.155

    Article  Google Scholar 

  36. Yu, L., Bian, C., Zhu, N., Shen, Y., Yuan, H.: Enhancement of methane production from anaerobic digestion of waste activated sludge with choline supplement. Energy 173, 1021–1029 (2019). https://doi.org/10.1016/j.energy.2019.02.076

    Article  Google Scholar 

  37. Shen, Y., Yu, Y., Zhang, Y., Urgun-Demirtas, M., Yuan, H., Zhu, N., Dai, X.: Role of redoxactive biochar with distinctive electrochemical properties to promote methane production in anaerobic digestion of waste activated sludge—ScienceDirect. J. Clean. Prod. 278, 123212 (2021). https://doi.org/10.1016/j.jclepro.2020.123212

    Article  Google Scholar 

  38. Watanabe, R., Tada, C., Baba, Y., Fukuda, Y., Nakai, Y.: Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal. Bioresour. Technol. 150, 387–397 (2013). https://doi.org/10.1016/j.biortech.2013.10.030

    Article  Google Scholar 

  39. Giwa, A.S., Xu, H., Chang, F., Wu, J., Li, Y., Ali, N., Ding, S., Wang, K.: Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations. J. Environ. Chem. Eng. 7(4), 103067 (2019). https://doi.org/10.1016/j.jece.2019.103067

    Article  Google Scholar 

  40. Ruffino, B., Campo, G., Cerutti, A., Zanetti, M., Lorenzi, E., Scibilia, G., Genon, G.: Preliminary technical and economic analysis of alkali and low temperature thermo-alkali pretreatments for the anaerobic digestion of waste activated sludge. Waste Biomass Valoriz. 7(4), 667–675 (2016). https://doi.org/10.1007/s12649-016-9537-x

    Article  Google Scholar 

  41. Han, B., Butterly, C., Zhang, W., He, J.Z., Chen, D.: Adsorbent materials for ammonium and ammonia removal: a review. J. Clean. Prod. 283(12), 124611 (2020). https://doi.org/10.1016/j.jclepro.2020.124611

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the science and technology innovation demonstration project of social development of Xi’an Science and Technology Bureau (Grant Number: 20SFSF0011) and Key Research and Development Program of Shaanxi Province (2021ZDLSF05-04)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Z., Wang, L. et al. Effects of Calamus-Derived Biochar on the Thermophilic Anaerobic Digestion of Long-SRT Waste Activated Sludge from the Municipal Wastewater Treatment Plant. Waste Biomass Valor 13, 2979–2989 (2022). https://doi.org/10.1007/s12649-022-01693-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01693-1

Keywords

Navigation