Skip to main content
Log in

Semi-continuous Cultivation of Chlorella minutissima in Landfill Leachate: Effect of Process Variables on Biomass Composition

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Microalgal biomass composition can be modulated by changing the type of bioreactor and cultivation conditions. Besides, these microorganisms can produce valuable biomass components from unconventional culture media, including effluents and wastes. Our objective was to evaluate the production and composition of biomass in an airlift bioreactor operated in a semi-continuous mode to cultivate the microalgae Chlorella minutissima in a landfill leachate-based medium.

Methods

Chlorella minutissima was cultivated in an airlift bioreactor operated in semi-continuous mode, applying a Taguchi L9 orthogonal arrangement and analyzing the effects of factors landfill leachate concentration (LC), percentage flux of CO2 added to the gas stream (GP), aeration flow in the reactor (AF), and feed flow (FR), on the cellular composition of biomass.

Results

The microalgae produced high protein levels, reaching a maximum content of 69.60% (LC: 10%, GP: null, AF: 0.30 vvm and FR: 0.9 µmax). The highest contents of lipid and carbohydrate were 17.4% (LC: 15%, GP: null, AF: 0.45 vvm and FR: 0.7 µmax vvm) and 11.6% (LC: 10%, GP: 15%, AF: 0.15 vvm and FR: 0.7 µmax). Statistical analysis showed LC was the most influential factor. GP did not show significance for any response, while the variables AF and FR showed significance in the productivity of proteins.

Conclusion

The use of unconventional cultivation media in airlift bioreactor operated in semi-continuous mode was shown as a system with potential to be used to valorize leachate by producing valuable biomass, allowing to obtain different cell composition by varying the process conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Markou, G., Iconomou, D., Muylaert, K.: Applying raw poultry litter leachate for the cultivation of Arthrospira platensis and Chlorella vulgaris. Algal Res. 13, 79–84 (2016). https://doi.org/10.1016/j.algal.2015.11.018

    Article  Google Scholar 

  2. de Souza, M.P., Hoeltz, M., Gressler, P.D., Benitez, L.B., Schneider, R.C.S.: Potential of microalgal bioproducts: general perspectives and main challenges. Waste Biomass Valor. 10, 2139–2156 (2019). https://doi.org/10.1007/s12649-018-0253-6

    Article  Google Scholar 

  3. Zhu, L., Hu, T., Li, S., Nugroho, Y.K., Li, B., Cao, J., Show, P.L., Hiltunen, E.: Effects of operating parameters on algae Chlorella vulgaris biomass harvesting and lipid extraction using metal sulfates as flocculants. Biomass Bioenergy 132, 105433 (2020). https://doi.org/10.1016/j.biombioe.2019.105433

    Article  Google Scholar 

  4. Obileke, K.C., Onyeaka, H., Omoregbe, O., Makaka, G., Nwokolo, N., Mukumba, P.: Bioenergy from bio-waste: a bibliometric analysis of the trend in scientific research from 1998–2018. Biomass Convers. Biorefinery. (2020). https://doi.org/10.1007/s13399-020-00832-9

    Article  Google Scholar 

  5. Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011). https://doi.org/10.1016/j.pecs.2010.01.003

    Article  Google Scholar 

  6. Gumbi, S.T., Mutanda, T., Olaniran, A.O.: Nutrient removal from dairy and poultry wastewater with simultaneous biomass and biodiesel production by Chlorella sp. T4 isolated from a freshwater stream in South Africa. Waste Biomass Valor. (2021). https://doi.org/10.1007/s12649-021-01492-0

    Article  Google Scholar 

  7. He, Z., Han, W., Jin, W., Yang, J., Gao, S., Li, S.F., Tu, R., Han, S., Chen, Y., Zhou, X.: Cultivation of Scenedesmus obliquus and Chlorella pyrenoidosa in municipal wastewater using monochromatic and white LED as light sources. Waste Biomass Valor. (2021). https://doi.org/10.1007/s12649-021-01359-4

    Article  Google Scholar 

  8. Apandi, N., Mohamed, R.M.S.R., Al-Gheethi, A., Gani, P., Ibrahim, A., Kassim, A.H.M.: Scenedesmus biomass productivity and nutrient removal from wet market wastewater, a bio-kinetic study. Waste Biomass Valor. 10, 2783–2800 (2019). https://doi.org/10.1007/s12649-018-0313-y

    Article  Google Scholar 

  9. Singh, B., Liu, Y., Sharma, Y.C.: Synthesis of biodiesel/bio-oil from microalgae. Biotechnol. Appl. Microalgae Biodiesel Value-Added Prod. 6, 99–112 (2013). https://doi.org/10.1201/b14920

    Article  Google Scholar 

  10. Tang, H., Chen, M., Simon Ng, K.Y., Salley, S.O.: Continuous microalgae cultivation in a photobioreactor. Biotechnol. Bioeng. 109, 2468–2474 (2012). https://doi.org/10.1002/bit.24516

    Article  Google Scholar 

  11. Guo, X., Yao, L., Huang, Q.: Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. Bioresour. Technol. (2015). https://doi.org/10.1016/j.biortech.2015.04.077

    Article  Google Scholar 

  12. Ramsundar, P., Guldhe, A., Singh, P., Bux, F.: Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour. Technol. 227, 82–92 (2017). https://doi.org/10.1016/j.biortech.2016.12.037

    Article  Google Scholar 

  13. Collotta, M., Champagne, P., Mabee, W., Tomasoni, G.: Wastewater and waste CO2 for sustainable biofuels from microalgae. Algal Res. 29, 12–21 (2018). https://doi.org/10.1016/j.algal.2017.11.013

    Article  Google Scholar 

  14. Iasimone, F., Panico, A., De Felice, V., Fantasma, F., Iorizzi, M., Pirozzi, F.: Effect of light intensity and nutrients supply on microalgae cultivated in urban wastewater: biomass production, lipids accumulation and settleability characteristics. J. Environ. Manage. 223, 1078–1085 (2018). https://doi.org/10.1016/j.jenvman.2018.07.024

    Article  Google Scholar 

  15. Tagliaferro, G.V., Filho, H.J.I., Chandel, A.K., da Silva, S.S., Silva, M.B., dos Santos, J.C.: Continuous cultivation of Chlorella minutissima 26a in landfill leachate-based medium using concentric tube airlift photobioreactor. Algal Res. 41, 101549 (2019). https://doi.org/10.1016/j.algal.2019.101549

    Article  Google Scholar 

  16. Brennan, L., Owende, P.: Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010). https://doi.org/10.1016/j.rser.2009.10.009

    Article  Google Scholar 

  17. Okoro, V., Azimov, U., Munoz, J., Hernandez, H.H., Phan, A.N.: Microalgae cultivation and harvesting: growth performance and use of flocculants - A review. Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.109364

    Article  Google Scholar 

  18. Park, J., Kumar, G., Bakonyi, P., Peter, J., Nemestóthy, N., Koter, S., Kujawski, W., Bélafi-Bakó, K., Pientka, Z., Muñoz, R., Kim, S.H.: Comparative evaluation of CO2 fixation of microalgae strains at various CO2 aeration conditions. Waste Biomass Valor. 12, 2999–3007 (2021). https://doi.org/10.1007/s12649-020-01226-8

    Article  Google Scholar 

  19. Kunjapur, A.M., Eldridge, R.B.: Photobioreactor design for commercial biofuel production from microalgae. Ind. Eng. Chem. Res. 49, 3516–3526 (2010). https://doi.org/10.1021/ie901459u

    Article  Google Scholar 

  20. Prabakaran, G., Moovendhan, M., Arumugam, A., Matharasi, A., Dineshkumar, R., Sampathkumar, P.: Evaluation of chemical composition and in vitro antiinflammatory effect of marine microalgae Chlorella vulgaris. Waste Biomass Valor. 10, 3263–3270 (2019). https://doi.org/10.1007/s12649-018-0370-2

    Article  Google Scholar 

  21. Olivieri, G., Salatino, P., Marzocchella, A.: Advances in photobioreactors for intensive microalgal production: configurations, operating strategies and applications. J. Chem. Technol. Biotechnol. 89, 178–195 (2014). https://doi.org/10.1002/jctb.4218

    Article  Google Scholar 

  22. Dasan, Y.K., Lam, M.K., Yusup, S., Lim, J.W., Show, P.L., Tan, I.S., Lee, K.T.: Cultivation of Chlorella vulgaris using sequential-flow bubble column photobioreactor: a stress-inducing strategy for lipid accumulation and carbon dioxide fixation. J. CO2 Util. (2020). https://doi.org/10.1016/j.jcou.2020.101226

    Article  Google Scholar 

  23. Tagliaferro, G.V., Izário Filho, H.J., Chandel, A.K., da Silva, S.S., Silva, M.B., dos Santos, J.C.: Continuous cultivation of Chlorella minutissima 26a in a tube-cylinder internal-loop airlift photobioreactor to support 3G biorefineries. Renew. Energy 130, 439–445 (2019). https://doi.org/10.1016/j.renene.2018.06.041

    Article  Google Scholar 

  24. Azhand, N., Sadeghizadeh, A., Rahimi, R.: Effect of superficial gas velocity on CO2 capture from air by Chlorella vulgaris microalgae in an Airlift photobioreactor with external sparger. J. Environ. Chem. Eng. 8, 104022 (2020). https://doi.org/10.1016/j.jece.2020.104022

    Article  Google Scholar 

  25. Fernandes, F.M., Silva, M.S., Maria, Â., Lima, F., Rocha, A.M., Soares, P.M., Konish, F.: Biodiesel no mundo e no Brasil : situação atual e cenarios futuros. 10° Congr. sobre Geração Distrib. e Energ. no meio Rural. 10, 10 (2015)

  26. Matos, Â.P., Torres, R.C.D.O., Morioka, L.R.I., Moecke, E.H.S., França, K.B., Sant’Anna, E.S.: Growing Chlorella vulgaris in photobioreactor by continuous process using concentrated desalination: effect of dilution rate on biochemical composition. Int. J. Chem. Eng. (2014). https://doi.org/10.1155/2014/310285

    Article  Google Scholar 

  27. Iasimone, F., De Felice, V., Panico, A., Pirozzi, F.: Experimental study for the reduction of CO2 emissions in wastewater treatment plant using microalgal cultivation. J. CO2 Util. 22, 1–8 (2017). https://doi.org/10.1016/j.jcou.2017.09.004

    Article  Google Scholar 

  28. Zhao, X., Zhou, Y., Huang, S., Qiu, D., Schideman, L., Chai, X., Zhao, Y.: Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour. Technol. 156, 322–328 (2014). https://doi.org/10.1016/j.biortech.2013.12.112

    Article  Google Scholar 

  29. Caporgno, M.P., Taleb, A., Olkiewicz, M., Font, J., Pruvost, J., Legrand, J., Bengoa, C.: Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Res. 10, 232–239 (2015). https://doi.org/10.1016/j.algal.2015.05.011

    Article  Google Scholar 

  30. Hernández-García, A., Velásquez-Orta, S.B., Novelo, E., Yáñez-Noguez, I., Monje-Ramírez, I., Orta Ledesma, M.T.: Wastewater-leachate treatment by microalgae: biomass, carbohydrate and lipid production. Ecotoxicol. Environ. Saf. 174, 435–444 (2019). https://doi.org/10.1016/j.ecoenv.2019.02.052

    Article  Google Scholar 

  31. Singh, V., Tiwari, A., Das, M.: Phyco-remediation of industrial waste-water and flue gases with algal-diesel engenderment from micro-algae: a review. Fuel 173, 90–97 (2016). https://doi.org/10.1016/j.fuel.2016.01.031

    Article  Google Scholar 

  32. Hu, Z., Qi, Y., Zhao, L., Chen, G.: Interactions between microalgae and microorganisms for wastewater remediation and biofuel production. Waste Biomass Valor. 10, 3907–3919 (2019). https://doi.org/10.1007/s12649-018-0325-7

    Article  Google Scholar 

  33. Ho, S.H., Chen, C.N.N., Lai, Y.Y., Lu, W.B., Chang, J.S.: Exploring the high lipid production potential of a thermotolerant microalga using statistical optimization and semi-continuous cultivation. Bioresour. Technol. 163, 128–135 (2014). https://doi.org/10.1016/j.biortech.2014.04.028

    Article  Google Scholar 

  34. Guillard, R.R.L.: Culture of phytoplankton for feeding marine invertebrates. In: Culture of marine invertebrate animals, pp. 29–60. Springer US, Boston, MA (1975)

    Chapter  Google Scholar 

  35. Bani, A., Gabriel, F., Fernandez, A., D’imporzano, G., Parati, K., Adani, F.: Influence of photobioreactor set-up on the survival of microalgae inoculum. Bioresour. Technol. 320, 124408 (2021). https://doi.org/10.1016/j.biortech.2020.124408

    Article  Google Scholar 

  36. Wan, C., Alam, M.A., Zhao, X.Q., Zhang, X.Y., Guo, S.L., Ho, S.H., Chang, J.S., Bai, F.W.: Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour. Technol. 184, 251–257 (2015). https://doi.org/10.1016/j.biortech.2014.11.081

    Article  Google Scholar 

  37. Williams, S.: Official methods of analysis of the association of official analytical chemists. Arlington (Va.) : Association of official analytical chemists (1984)

  38. Bligh, E.G., Dyer, W.J.: A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. (1959). https://doi.org/10.1139/o59-099

    Article  Google Scholar 

  39. Zorn, S.M.F.E., Pedro, G.A., Amaral, M.S., Loures, C.C.A., Silva, M.B.: Avaliação dos fatores envolvidos na extração de lipídios da biomassa da microalga Chlorella minutíssima via solventes. Holos 2, 66 (2017). https://doi.org/10.15628/holos.2017.5655

    Article  Google Scholar 

  40. Guimarães, C.P., Lanfer-marquez, U.M.: Estimativa do teor de fenilalanina em sopas desidratadas instantâneas : importância do nitrogênio de origem não-protéica. Braz. J. Pharm. Sci. (2005). https://doi.org/10.1590/S1516-93322005000300010

    Article  Google Scholar 

  41. Moxley, G., Zhang, Y.-H.P.: More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification. Energy Fuels 21, 3684–3688 (2007). https://doi.org/10.1021/ef7003893

    Article  Google Scholar 

  42. Xia, M.L., Wang, L., Yang, Z.X., Chen, H.Z.: A novel digital color analysis method for rapid glucose detection. Anal. Methods. (2015). https://doi.org/10.1039/c5ay01233c

    Article  Google Scholar 

  43. Van Wychen, S., Laurens, L.M.L.: [NREL] Determination of total solids and ash in algal biomas. NREL/TP-5100-60956 (2013). https://doi.org/10.2172/1118077

  44. Lin, L., Chan, G.Y.S., Jiang, B.L., Lan, C.Y.: Use of ammoniacal nitrogen tolerant microalgae in landfill leachate treatment. Waste Manage. 27, 1376–1382 (2007). https://doi.org/10.1016/j.wasman.2006.09.001

    Article  Google Scholar 

  45. Nair, A.T., Senthilnathan, J., Nagendra, S.M.S.: Application of the phycoremediation process for tertiary treatment of landfill leachate and carbon dioxide mitigation. J. Water Process Eng. 28, 322–330 (2019). https://doi.org/10.1016/j.jwpe.2019.02.017

    Article  Google Scholar 

  46. Zhao, B., Su, Y., Zhang, Y., Cui, G.: Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy 89, 347–357 (2015). https://doi.org/10.1016/j.energy.2015.05.123

    Article  Google Scholar 

  47. Kuo, C.M., Jian, J.F., Lin, T.H., Chang, Y.B., Wan, X.H., Lai, J.T., Chang, J.S., Lin, C.S.: Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresour. Technol. (2016). https://doi.org/10.1016/j.biortech.2016.09.014

    Article  Google Scholar 

  48. Tan, X.B., Lam, M.K., Uemura, Y., Lim, J.W., Wong, C.Y., Ramli, A., Kiew, P.L., Lee, K.T.: Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: growth optimization study and fatty acid composition analysis. Energy Convers. Manage. 164, 363–373 (2018). https://doi.org/10.1016/j.enconman.2018.03.020

    Article  Google Scholar 

  49. Tighiri, H.O., Erkurt, E.A.: Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization. Bioresour. Technol. 286, 121396 (2019). https://doi.org/10.1016/j.biortech.2019.121396

    Article  Google Scholar 

  50. Evans, L., Hennige, S.J., Willoughby, N., Adeloye, A.J., Skroblin, M., Gutierrez, T.: Effect of organic carbon enrichment on the treatment efficiency of primary settled wastewater by Chlorella vulgaris. Algal Res. 24, 368–377 (2017). https://doi.org/10.1016/j.algal.2017.04.011

    Article  Google Scholar 

  51. Serrano-Bermúdez, L.M., Montenegro-Ruíz, L.C., Godoy-Silva, R.D.: Effect of CO2, aeration, irradiance, and photoperiod on biomass and lipid accumulation in a microalga autotrophically cultured and selected from four Colombian-native strains. Bioresour. Technol. Rep. 12, 100578 (2020). https://doi.org/10.1016/j.biteb.2020.100578

    Article  Google Scholar 

  52. Han, F., Huang, J., Li, Y., Wang, W., Wan, M., Shen, G., Wang, J.: Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresour. Technol. 136, 418–424 (2013). https://doi.org/10.1016/j.biortech.2013.03.017

    Article  Google Scholar 

  53. Guillard, R.R.L., Ryther, J.H.: Studies of marine planktonic diatoms. I. Cyclotella nana hustedt, and Detonula confervacea (CLEVE). Can. J. Microbiol. 8, 229–239 (1962)

    Article  Google Scholar 

  54. Eustance, E., Wray, J.T., Badvipour, S., Sommerfeld, M.R.: The effects of limiting nighttime aeration on productivity and lipid accumulation in Scenedesmus dimorphous. Algal Res. 10, 33–40 (2015). https://doi.org/10.1016/j.algal.2015.04.002

    Article  Google Scholar 

  55. Benemann, J.R., Oswald, W.J.: Systems and economic analysis of microalgae ponds for conversion of co2 to biomass. Final Rep. Dep. Energy, Pittsburgh Energy Technol. Cent. (1996). https://doi.org/10.2172/493389

    Article  Google Scholar 

  56. Nordin, N., Yusof, N., Samsudin, S.: Biomass production of Chlorella sp. Scenedesmus sp., and Oscillatoria sp. in nitrified landfill leachate. Waste Biomass Valor. 8, 2301–2311 (2017). https://doi.org/10.1007/s12649-016-9709-8

    Article  Google Scholar 

  57. Cheng, H.N., Ford, C., Dowd, M.K., He, Z.: Soy and cottonseed protein blends as wood adhesives. Ind. Crops Prod. 85, 324–330 (2016). https://doi.org/10.1016/j.indcrop.2015.12.024

    Article  Google Scholar 

  58. Bandara, N., Chen, L., Wu, J.: Adhesive properties of modified triticale distillers grain proteins. Int. J. Adhes. Adhes. 44, 122–129 (2013). https://doi.org/10.1016/j.ijadhadh.2013.02.014

    Article  Google Scholar 

  59. Barone, J.R., Schmidt, W.F.: Nonfood applications of proteinaceous renewable materials. J. Chem. Educ. 83, 1003–1009 (2006). https://doi.org/10.1021/ed083p1003

    Article  Google Scholar 

  60. Tagliaferro, G.V., José, H., Filho, I., Chandel, A.K., Silvério, S., da Silva, M.B., César, J.: Continuous cultivation of Chlorella minutissima 26a in a tube-cylinder internal-loop airlift photobioreactor to support 3G biorefineries. Renew. Energy 130, 439–445 (2019). https://doi.org/10.1016/j.renene.2018.06.041

    Article  Google Scholar 

  61. Lundquist, T.J., Woertz, I.C., Quinn, N.W.T., Benemann, J.R.: A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, California (2010)

    Google Scholar 

  62. Doucha, J., Straka, F., Lívanský, K.: Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J. Appl. Phycol. 17, 403–412 (2005). https://doi.org/10.1007/s10811-005-8701-7

    Article  Google Scholar 

  63. Acién, F.G., Fernández, J.M., Magán, J.J., Molina, E.: Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 30, 1344–1353 (2012). https://doi.org/10.1016/j.biotechadv.2012.02.005

    Article  Google Scholar 

  64. Mohammady, N.G.-E., El-Sayed, H.S., Fakhry, E.M., Taha, H.M., Mohamed, J.H., Mahmoud, N.H., Abdelsalam, B.A.: Locally Isolated microalgae as a source of biodiesel and by-products: an integral study of med-algae project. Int. J. Chem. Concepts 1, 94–102 (2015)

    Google Scholar 

  65. Sandoval, R.M.A., Flores, E.M.F., Narváez, C.R.A., López-Villada, J.: Phototrophic culture of Chlorella sp. using charcoal ash as an inorganic nutrient source. Algal Res. 11, 368–374 (2015). https://doi.org/10.1016/j.algal.2015.07.008

    Article  Google Scholar 

  66. Cancela, Á., Álvarez, X., Sánchez, Á., Ortiz, L., Somoza, L.: Microalgae cultivation and harvesting for bioenergy production. Bioresour. Technol. Rep. 8, 100333 (2019). https://doi.org/10.1016/j.biteb.2019.100333

    Article  Google Scholar 

  67. De Souza, R.A.S., Saldanha-Corrêa, F.M.P., Gallego, A.G., Neto, A.M.P.: Semi-quantitative determination of ash element content for freeze-dried, defatted, sulfated and pyrolysed biomass of Scenedesmus sp.. Biotechnol. Biofuels 13, 1–13 (2020). https://doi.org/10.1186/s13068-020-01699-8

    Article  Google Scholar 

  68. Phukan, M.M., Chutia, R.S., Konwar, B.K., Kataki, R.: Microalgae Chlorella as a potential bio-energy feedstock. Appl. Energy 88, 3307–3312 (2011). https://doi.org/10.1016/j.apenergy.2010.11.026

    Article  Google Scholar 

  69. Xu, D., Wang, Y., Lin, G., Guo, S., Wang, S., Wu, Z.: Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: ash effects on bio-oil production. Renew. Energy 138, 1143–1151 (2019). https://doi.org/10.1016/j.renene.2019.02.020

    Article  Google Scholar 

  70. Cervantes-Urieta, V.A., Pérez-Castro, D., Galeana-Parra, M.A., Ramírez-Fuentes, E., Trujillo-Tapia, M.N.: Cultivo y composición bioquímica de diatomeas marinas (Bacillariophyta) de la Bahía de Santa Lucía, Acapulco, Mexico. Gayana. Botánica. 77, 11–22 (2020). https://doi.org/10.4067/s0717-66432020000100011

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of São Paulo Research Foundation (FAPESP, Brazil) through the Grants 2014/03244-0 and 2016/23416-6.

Funding

São Paulo Research Foundation (FAPESP, Brazil): Grants 2014/03244-0 and 2016/23416-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geronimo Virginio Tagliaferro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, W.R., Tagliaferro, G.V., dos Santos, J.C. et al. Semi-continuous Cultivation of Chlorella minutissima in Landfill Leachate: Effect of Process Variables on Biomass Composition. Waste Biomass Valor 13, 1627–1638 (2022). https://doi.org/10.1007/s12649-021-01614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01614-8

Keywords

Navigation