Skip to main content

Advertisement

Log in

Marine Fungi as Potential Eco-Sustainable Resource for Precious Metals Recovery from Electronic Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The recovery of valuable metals from waste electrical and electronic equipment (WEE or e-waste) might be achieved by bioleaching, a microbial-based technology which can substitute in the future chemical-based processes, reducing environmental impacts. Although marine fungi are still little exploited for such purposes, they are potential interesting targets. In the present study, we isolated marine fungi from contaminated sediments collected in two coastal areas (Bagnoli-Coroglio Bay, Italy; Bilbao estuary, Spain) and identified four high tolerant fungal taxa to high concentration of e-waste (100 g L−1). Such fungal taxa, belonging to the fungal families Dipodascaceae, Microascaceae, Gymnoascaceae and Trichocomaceae, were tested for their bioleaching and bioaccumulation potential of metals present in e-waste, using different experimental approaches. Results reported here indicate that the fungi are able to bioaccumulate metals released from e-waste with an efficiency depending from fungal strains and metals considered. Among precious elements, platinum was highly concentrated within fungal biomass (31–62%) across all strains. Our findings provide new insights on the potential of marine fungi inhabiting highly contaminated marine sediments as promising candidates to be used for the recovery of precious metals from electronic waste.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

e-waste:

Electrical and electronic equipment

ABS:

Access and benefit sharing

ITS:

Internal transcribed spacer

18S rRNA:

18S ribosomal RNA

MEE:

Metal extraction experiment

BE:

Biomass experiment

CE:

Chemotaxis experiment

Fe:

Iron

Cu:

Copper

Pd:

Palladium

Ag:

Silver

Pt:

Platinum

Au:

Gold

ICP-MS:

Inductively coupled plasma–mass spectrometry

RGR:

Radial growth rate

References

  1. Baldé, C.P., Forti, V., Gray, V., Kuehr, R., Stegmann, P.: The Global E-Waste Monitor—2017. United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna (2017)

    Google Scholar 

  2. Khaliq, A., Rhamdhani, M.A., Brooks, G., Masood, S.: Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources (2014). https://doi.org/10.3390/resources3010152

    Article  Google Scholar 

  3. Vidyadhar, A.: A review of technology of metal recovery from electronic waste. In: E-Waste in Transition—From Pollution to Resource. IntechOpen, London (2016)

    Google Scholar 

  4. Vermeşan, H., Tiuc, A.E., Purcar, M.: Advanced recovery techniques for waste materials from IT and telecommunication equipment printed circuit boards. Sustainability (2020). https://doi.org/10.3390/su12010074

    Article  Google Scholar 

  5. Ghimire, H., Ariya, P.A.: E-wastes: bridging the knowledge gaps in global production budgets, composition, recycling and sustainability implications. Sustain Chem (2020). https://doi.org/10.3390/suschem1020012

    Article  Google Scholar 

  6. Sethurajan, M., et al.: Recent advances on hydrometallurgical recovery of critical and precious elements from end of life electronic wastes—a review. Crit. Rev. Environ. Sci. Technol. (2019). https://doi.org/10.1080/10643389.2018.1540760

    Article  Google Scholar 

  7. Abdelbasir, S.M., Hassan, S.S.M., Kamel, A.H., El-Nasr, R.S.: Status of electronic waste recycling techniques: a review. Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-018-2136-6

    Article  Google Scholar 

  8. Cui, J., Zhang, L.: Metallurgical recovery of metals from electronic waste: a review. J. Hazard. Mater. (2008). https://doi.org/10.1016/j.jhazmat.2008.02.001

    Article  Google Scholar 

  9. Choi, M.S., Cho, K.S., Kim, D.S., Kim, D.J.: Microbial recovery of copper from printed circuit boards of waste computer by Acidithiobacillus ferrooxidans. J. Environ. Sci. Health (2004). https://doi.org/10.1081/LESA-200034763

    Article  Google Scholar 

  10. Pradhan, J.K., Kumar, S.: Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp. Waste Manage. Res. (2012). https://doi.org/10.1177/0734242X12437565

    Article  Google Scholar 

  11. Sedlakova-Kadukova, J., Marcincakova, R., Luptakova, A., Vojtko, M., Fujda, M., Pristas, P.: Comparison of three different bioleaching systems for Li recovery from lepidolite. Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-71596-5

    Article  Google Scholar 

  12. Işıldar, A., van Hullebusch, E.D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., Panda, S., Akcil, S., Kucuker, M.A., Kuchta, K.: Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—a review. J. Hazard. Mater. (2019). https://doi.org/10.1016/j.jhazmat.2018.08.050

    Article  Google Scholar 

  13. Lee, J., Pandey, B.D.: Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manage. (2012). https://doi.org/10.1016/j.wasman.2011.08.010

    Article  Google Scholar 

  14. Armiento, G., et al.: Current status of coastal sediments contamination in the former industrial area of Bagnoli-Coroglio (Naples, Italy). Chem. Ecol. (2020). https://doi.org/10.1080/02757540.2020.1747448

    Article  Google Scholar 

  15. Briaudeau, T., Zorita, I., Cuevas, N., Franco, J., Marigómez, I., Izagirre, U.: Multi-annual survey of health status disturbance in the Bilbao estuary (Bay of Biscay) based on sediment chemistry and juvenile sole (Solea spp.) histopathology. Mar. Pollut. Bull. (2019). https://doi.org/10.1016/j.marpolbul.2019.05.034

    Article  Google Scholar 

  16. Bargiela, R., et al.: Metaproteomics and metabolomics analyses of chronically petroleum-polluted sites reveal the importance of general anaerobic processes uncoupled with degradation. Proteomics (2015). https://doi.org/10.1002/pmic.201400614

    Article  Google Scholar 

  17. Catania, V., Cappello, S., Di Giorgi, V., Santisi, S., Di Maria, R., Mazzola, A., Vizzini, S., Quatrini, P.: Microbial communities of polluted sub-surface marine sediments. Mar. Pollut. Bull. (2018). https://doi.org/10.1016/j.marpolbul.2018.04.015

    Article  Google Scholar 

  18. Tangherlini, M., Corinaldesi, C., Rastelli, E., Musco, L., Armiento, G., Danovaro, R., Dell’Anno, A.: Chemical contamination can promote turnover diversity of benthic prokaryotic assemblages: the case study of the Bagnoli-Coroglio bay (southern Tyrrhenian Sea). Mar. Environ. Res. (2020). https://doi.org/10.1016/j.marenvres.2020.105040

    Article  Google Scholar 

  19. Chemidlin Prévost-Bouré, N., Prévost-Bouré, N.C., Christen, R., Dequiedt, S., Mougel, C., Lelièvre, M., Jolivet, C., Shahbazkia, H.R., Guillou, L., Arrouays, D., Ranjard, L.: Validation and application of a PCR primer set to quantify fungal communities in the soil environment by real-time quantitative PCR. PLoS ONE (2011). https://doi.org/10.1371/journal.pone.0024166

    Article  Google Scholar 

  20. Li, S., Deng, Y., Wang, Z., Zhang, Z., Kong, X., Zhou, W., Yi, Y., Qu, Y.: Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Mol. Ecol. Resour. (2020). https://doi.org/10.1111/1755-0998.13097

    Article  Google Scholar 

  21. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., Madden, T.L.: NCBI BLAST: a better web interface. Nucleic Acids Res. (2008). https://doi.org/10.1093/nar/gkn201

    Article  Google Scholar 

  22. R Development Core Team: R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2017)

    Google Scholar 

  23. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009)

    Book  Google Scholar 

  24. Barone, G., Rastelli, E., Corinaldesi, C., Tangherlini, M., Danovaro, R., Dell’Anno, A.: Benthic deep-sea fungi in submarine canyons of the Mediterranean Sea. Prog. Oceanogr. (2018). https://doi.org/10.1016/j.pocean.2018.09.011

    Article  Google Scholar 

  25. Gambi, C.A., Dell’Anno, A., Corinaldesi, C., Lo Martire, M., Musco, L., Da Ros, Z., Armiento, G., Danovaro, R.: Impact of historical contamination on meiofaunal assemblages: The case study of the Bagnoli-Coroglio Bay (southern Tyrrhenian Sea). Mar. Environ. Res. (2020). https://doi.org/10.1016/j.marenvres.2020.104907

    Article  Google Scholar 

  26. Serrano, H., Villasante-Marcos, V.: Environmental regeneration processes in the Anthropocene: The Bilbao estuary case (northern Spain). Mar. Pollut. Bull. (2018). https://doi.org/10.1016/j.marpolbul.2018.08.022

    Article  Google Scholar 

  27. Deshmukh, R., Khardenavis, A.A., Purohit, H.J.: Diverse metabolic capacities of fungi for bioremediation. Indian J. Microbiol. (2016). https://doi.org/10.1007/s12088-016-0584-6

    Article  Google Scholar 

  28. Cecchi, G., Cutroneo, L., Di Piazza, S., Vagge, G., Cappello, M., Zotti, M.: From waste to resource: mycoremediation of contaminated marine sediments in the SEDITERRA Project. J. Soils Sediments (2020). https://doi.org/10.1007/s11368-019-02527-9

    Article  Google Scholar 

  29. Romano, E., Bergamin, L., Ausili, A., Pierfranceschi, G., Maggi, C., Sesta, G., Gabellini, M.: The impact of the Bagnoli industrial site (Naples, Italy) on sea-bottom environment. Chemical and textural features of sediments and the related response of benthic foraminifera. Mar. Pollut. Bull. (2009). https://doi.org/10.1016/j.marpolbul.2009.09.017

    Article  Google Scholar 

  30. Garmendia, M., de Fdez-OrtizVallejuelo, S., Liñero, O., Gredilla, A., Arana, G., Soto, M., de Diego, A.: Long term monitoring of metal pollution in sediments as a tool to investigate the effects of engineering works in estuaries. A case study, the Nerbioi-Ibaizabal estuary (Bilbao, Basque Country). Mar. Pollut. Bull. (2019). https://doi.org/10.1016/j.marpolbul.2019.06.051

    Article  Google Scholar 

  31. Dell’Anno, F., Brunet, C., van Zyl, L.J., Trindade, M., Golyshin, P.N., Dell’Anno, A., Ianora, A., Sansone, C.: Degradation of hydrocarbons and heavy metal reduction by marine bacteria in highly contaminated sediments. Microorganisms (2020). https://doi.org/10.3390/microorganisms8091402

    Article  Google Scholar 

  32. Anahid, S., Yaghmaei, S., Ghobadinejad, Z.: Heavy metal tolerance of fungi. Sci. Iran. (2011). https://doi.org/10.1016/j.ipl.2011.05.015

    Article  Google Scholar 

  33. Madrigal-Arias, J.E., Argumedo-Delira, R., Alarcón, A., Mendoza-López, M.R., García-Barradas, O., Cruz-Sánchez, J.S., Ferrera-Cerrato, R., Jiménez-Fernández, M.: Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus niger strains. Braz. J. Microbiol. (2015). https://doi.org/10.1590/S1517-838246320140256

    Article  Google Scholar 

  34. Argumedo-Delira, R., Gómez-Martínez, M.J., Soto, B.J.: Gold bioleaching from printed circuit boards of mobile phones by Aspergillus niger in a culture without agitation and with glucose as a carbon source. Metals (2019). https://doi.org/10.3390/met9050521

    Article  Google Scholar 

  35. Ghosh, G.R.: Physiological studies of the Gymnoascaceae with an overview on their ecology. Proc. Plant Sci. (1985). https://doi.org/10.1007/BF03053137

    Article  Google Scholar 

  36. Houbraken, J., Samson, R.A.: Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Stud. Mycol. (2011). https://doi.org/10.3114/sim.2011.70.01

    Article  Google Scholar 

  37. Sitepu, I., Enriquez, L., Nguyen, V., Fry, R., Simmons, B., Singer, S., Simmons, C., Boundy-Mills, K.L.: Ionic liquid tolerance of yeasts in family Dipodascaceae and genus Wickerhamomyces. Appl. Biochem. Biotechnol. (2020). https://doi.org/10.1007/s12010-020-03293-y

    Article  Google Scholar 

  38. Sandoval-Denis, M., Guarro, J., Cano-Lira, J.F., Sutton, D.A., Wiederhold, N.P., de Hoog, G.S., Abbott, S.P., Decock, C., Sigler, L., Gené, J.: Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Stud. Mycol. (2016). https://doi.org/10.1016/j.simyco.2016.07.002

    Article  Google Scholar 

  39. García-Peña, E.I., Hernández, S., Favela-Torres, E., Auria, R., Revah, S.: Toluene biofiltration by the fungus Scedosporium apiospermum TB1. Biotechnol. Bioeng. (2001). https://doi.org/10.1002/bit.1026

    Article  Google Scholar 

  40. Muehlstein, L.K., Amon, J.P., Leffler, D.L.: Chemotaxis in the marine fungus Rhizophydium littoreum. Appl. Environ. Microbiol. (1988). https://doi.org/10.1128/AEM.54.7.1668-1672.1988

    Article  Google Scholar 

  41. Barrionuevo, M.R., Vullo, D.L.: Bacterial swimming, swarming and chemotactic response to heavy metal presence: which could be the influence on wastewater biotreatment efficiency? World J. Microbiol. Biotechnol. (2012). https://doi.org/10.1007/s11274-012-1091-5

    Article  Google Scholar 

  42. Brandl, H., Bosshard, R., Wegmann, M.: Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy (2001). https://doi.org/10.1016/S0304-386X(00)00188-2

    Article  Google Scholar 

  43. Chaudhary, N., Banerjee, T., Ibrahim, N., Sibi, G.: Fungal leaching of iron ore: isolation, characterization and bioleaching studies of Penicillium verruculosum. Curr. Res. Microbiol. (2014). https://doi.org/10.3844/ajmsp.2014.27.32

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Civil and Building Engineering and Architecture of the Polytechnic University of Marche for their support in providing crushed e-waste. The authors thank technical and human support provided by SGIker (UPV/EHU/ ERDF, EU).

Funding

This research was funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 730984, “ASSEMBLE Plus” project.

Author information

Authors and Affiliations

Authors

Contributions

CG, ADA, CS and MT designed the experiments; CG, CS and MT performed all experiments; CG, ADA, CS, CB, XL, IC and MT analyzed the data; XL and IC organized and cooperated to Bilbao sampling activity; CG, CS and MT wrote the original draft; CG, XL, IC, ADA, CB, CS and MT reviewed and edited the manuscript; CG, CS and MT collaborated for funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Clementina Sansone.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galasso, C., Lekube, X., Cancio, I. et al. Marine Fungi as Potential Eco-Sustainable Resource for Precious Metals Recovery from Electronic Waste. Waste Biomass Valor 13, 967–976 (2022). https://doi.org/10.1007/s12649-021-01587-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01587-8

Keywords

Navigation