Skip to main content

Advertisement

Log in

Effects of Feeding Regimes on Process Performance and Microbial Community Structure in Anaerobic Semi-continuously Stirred Tank Reactors Treating Corn Stover

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Corn stover is one of the dominant agricultural wastes in China, with high lignocellulose contents. Anaerobic digestion of corn stover converts biomass to biogas as sustainable energy. To improve the performance of anaerobic digestion, as well as for flexible biogas production, the effects of different feeding regimes on biogas production, system stability, and microbial community structure were investigated using laboratory-scale semi-continuously stirred tank reactors (semi-CSTRs) fed pretreated corn stover once a day (R1), every 2 days (R2) and every 3 days (R3) at an equivalent amount. The results showed that R3 and R2 produced 11.1% and 8.4% more methane, respectively. R3 correspondingly had higher lignocellulose conversion rates and system stability, followed by R2 and R1. Greater fluctuations in biogas, VFA concentrations and pH were found in less frequently fed reactors during the time interval between two feeds. Additionally, less feeding increased the relative abundance of Bacteroidetes and Firmicutes during hydrolysis and acidogenesis, and the dominant genus of archaea in all reactors was Methanobacterium, which is a hydrogenotrophic methanogen. Therefore, appropriately reducing the feeding frequency can increase the process performance of anaerobic digestion of corn stover.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Bureau of Statistics of the People’s Republic of China: China statistical yearbook 2019. China Statistics Press, Beijing (2020)

  2. Li, Y., Liu, C., Wachemo, A.C., Yuan, H., Zou, D., Liu, Y., Li, X.: Serial completely stirred tank reactors for improving biogas production and substance degradation during anaerobic digestion of corn stover. Bioresour. Technol. 235, 380–388 (2017). https://doi.org/10.1016/j.biortech.2017.03.058

    Article  Google Scholar 

  3. Wang, X., Song, X., Yuan, H., Li, X., Zuo, X.: Two-step pretreatment of hydrothermal with ammonia for cow bedding: pretreatment characteristics, anaerobic digestion performance and kinetic analysis. Waste Biomass Valorization (2021). https://doi.org/10.1007/s12649-021-01395-0

    Article  Google Scholar 

  4. Weithmann, N., Mlinar, S., Sonnleitner, E., Sonnleitner, E., Weig, A.R., Freitag, R.: Flexible feeding in anaerobic digestion-impact on process stability, performance and microbial community structures. Anaerobe (2020). https://doi.org/10.1016/j.anaerobe.2020.102297

    Article  Google Scholar 

  5. Yu, Q., Sun, C., Liu, R., Yellezuome, D., Zhu, X., Bai, R., Liu, M., Sun, M.: Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: the effect of biochar addition and urea pretreatment. Bioresour. Technol. 319, 124197 (2021). https://doi.org/10.1016/j.biortech.2020.124197

    Article  Google Scholar 

  6. Guan, R., Yuan, H., Wachemo, A.C., Li, X., Zuo, X., Zou, D., Liu, Y., Gu, J.: Effect of narrow feeding regimes on anaerobic digestion performance and microbial community structure of rice straw in continuously stirred tank reactors. Energy Fuels 32(11), 11587–11594 (2018). https://doi.org/10.1021/acs.energyfuels.8b02533

    Article  Google Scholar 

  7. Szarka, N., Scholwin, F., Trommler, M., Jacobi, H., Eichhorn, M., Ortwein, A., Thran, D.: A novel role for bioenergy: a flexible, demand-oriented power supply. Energy 61, 18–26 (2013). https://doi.org/10.1016/j.energy.2012.12.053

    Article  Google Scholar 

  8. Hahn, H., Krautkremer, B., Hartmann, K., Wachendorf, M.: Review of concepts for a demand-driven biogas supply for flexible power generation. Renew. Sust. Energ. Rev. 29, 383–393 (2014). https://doi.org/10.1016/j.rser.2013.08.085

    Article  Google Scholar 

  9. Mulat, D.G., Jacobi, H.F., Feilberg, A., Adamsen, A.P.S., Richnow, H.H., Nikolausz, M.: Changing feeding regimes to demonstrate flexible biogas production: effects on process performance, microbial community structure, and methanogenesis pathways. Appl. Microbiol. Biotechnol. 82(2), 438–449 (2016). https://doi.org/10.1128/AEM.02320-15

    Article  Google Scholar 

  10. Maurus, K., Ahmed, S., Kazda, M.: Beneficial effects of intermittent feedstock management on biogas and methane production. Bioresour. Technol. 304, 123004 (2020). https://doi.org/10.1016/j.biortech.2020.123004

    Article  Google Scholar 

  11. Lu, F., Jiang, Q., Qian, F., Zhou, Q., Jiang, C., Shen, P.: Semi-continuous feeding combined with traditional domestication improved anaerobic performance during treatment of cassava stillage. Bioresour. Technol. 291, 121807 (2019). https://doi.org/10.1016/j.biortech.2019.121807

    Article  Google Scholar 

  12. Svensson, K., Paruch, L., Gaby, J.C., Linjordet, R.: Feeding frequency influences process performance and microbial community composition in anaerobic digesters treating steam exploded food waste. Bioresour. Technol. 269, 276–284 (2018). https://doi.org/10.1016/j.biortech.2018.08.096

    Article  Google Scholar 

  13. Ziganshin, A.M., Schmidt, T., Lv, Z.P., Liebetrau, J., Richnow, H.H., Kleinsteuber, S., Nikolausz, M.: Reduction of the hydraulic retention time at constant high organic loading rate to reach the microbial limits of anaerobic digestion in various reactor systems. Bioresour. Technol. 217, 62–71 (2016). https://doi.org/10.1016/j.biortech.2016.01.096

    Article  Google Scholar 

  14. Heyer, R., Klang, J., Hellwig, P., Schallert, K., Kress, P., Huelsemann, B., Theuerl, S., Reichl, U., Benndorf, D.: Impact of feeding and stirring regimes on the internal stratification of microbial communities in the fermenter of anaerobic digestion plants. Bioresour. Technol. 314, 123679 (2020). https://doi.org/10.1016/j.biortech.2020.123679

    Article  Google Scholar 

  15. Piao, Z.H., Lee, J., Kim, J.Y.: Effect of substrate feeding frequencies on the methane production and microbial communities of laboratory-scale anaerobic digestion reactors. J. Mater. Cycles Waste Manag. 20(1), 147–154 (2018). https://doi.org/10.1007/s10163-016-0556-2

    Article  Google Scholar 

  16. Ziels, R.M., Beck, D.A.C., Stensel, H.D.: Long-chain fatty acid feeding frequency in anaerobic codigestion impacts syntrophic community structure and biokinetics. Water Res. 117, 218–229 (2017). https://doi.org/10.1016/j.watres.2017.03.060

    Article  Google Scholar 

  17. Li, Y., Liu, C., Wachemo, A.C., Li, X.: Effects of liquid fraction of digestate recirculation on system performance and microbial community structure during serial anaerobic digestion of completely stirred tank reactors for corn stover. Energy 160, 309–317 (2018). https://doi.org/10.1016/j.energy.2018.06.082

    Article  Google Scholar 

  18. Rice, E.W., Barid, R.B., Eaton, A.D.: Standard methods for the examination of water and wastewater, 23rd ed. American Public Health Association/American Water Works Association/Water Environment Federation (2017)

  19. Mauky, E., Jacobi, H.F., Liebetrau, J., Nelles, M.: Flexible biogas production for demand-driven energy supply-feeding strategies and types of substrates. Bioresour. Technol. 178, 262–269 (2015). https://doi.org/10.1016/j.biortech.2014.08.123

    Article  Google Scholar 

  20. Vital-Jacome, M.A., Buitron, G.: Thermophilic anaerobic digestion of winery effluents in a two-stage process and the effect of the feeding frequency on methane production. Chemosphere 272, 129865 (2021). https://doi.org/10.1016/j.chemosphere.2021.129865

    Article  Google Scholar 

  21. Zhong, W., Zhang, Z., Luo, Y., Sun, S., Qiao, W., Xiao, M.: Effect of biological pretreatments in enhancing corn straw biogas production. Bioresour. Technol. 102(24), 11177–11182 (2011). https://doi.org/10.1016/j.biortech.2011.09.077

    Article  Google Scholar 

  22. Herrmann, C., Idler, C., Heiermann, M.: Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics. Bioresour. Technol. 206, 23–35 (2016). https://doi.org/10.1016/j.biortech.2016.01.058

    Article  Google Scholar 

  23. Sambusiti, C., Monlau, F., Ficara, E., Musatti, A., Rollini, M., Barakat, A., Malpei, F.: Comparison of various post-treatments for recovering methane from agricultural digestate. Fuel Process. Technol. 137, 359–365 (2015). https://doi.org/10.1016/j.fuproc.2015.04.028

    Article  Google Scholar 

  24. Ruile, S., Schmitz, S., Moench-Tegeder, M., Oechsner, H.: Degradation efficiency of agricultural biogas plants: a full-scale study. Bioresour. Technol. 178, 341–349 (2015). https://doi.org/10.1016/j.biortech.2014.10.053

    Article  Google Scholar 

  25. Ye, J., Li, D., Sun, Y., Wang, G., Yuan, Z., Zhen, F., Wang, Y.: Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste Manage. 33(12), 2653–2658 (2013). https://doi.org/10.1016/j.wasman.2013.05.014

    Article  Google Scholar 

  26. Wei, Y., Li, X., Yu, L., Zou, D., Yuan, H.: Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment. Bioresour. Technol. 198, 431–436 (2015). https://doi.org/10.1016/j.wasman.2013.05.014

    Article  Google Scholar 

  27. Wang, X., Duan, X., Chen, J., Fang, K., Feng, L., Yan, Y., Zhou, Q.: Enhancing anaerobic digestion of waste activated sludge by pretreatment: effect of volatile to total solids. Environ. Technol. 37(12), 1520–1529 (2016). https://doi.org/10.1080/09593330.2015.1120783

    Article  Google Scholar 

  28. Rawoof, S.A.A., Kumar, P.S., Vo, D.V.N., Subramanian, S.: Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: a review. Environ. Chem. Lett. (2020). https://doi.org/10.1007/s10311-020-01122-6

    Article  Google Scholar 

  29. Kafle, G.K., Kim, S.H.: Sludge exchange process on two serial CSTRs anaerobic digestions: process failure and recovery. Bioresour. Technol. 102(13), 6815–6822 (2011). https://doi.org/10.1016/j.biortech.2011.04.013

    Article  Google Scholar 

  30. Hu, Y., Shen, F., Yuan, H., Zou, D., Pang, Y., Liu, Y., Zhu, B., Chufo, W.A., Jaffar, M., Li, X.: Influence of recirculation of liquid fraction of the digestate (LFD) on maize stover anaerobic digestion. Biosyst. Eng. 127, 189–196 (2014). https://doi.org/10.1016/j.biosystemseng.2014.09.006

    Article  Google Scholar 

  31. Bonk, F., Popp, D., Weinrich, S., Strauber, H., Kleinsteuber, S., Harms, H., Centler, F.: Intermittent fasting for microbes: how discontinuous feeding increases functional stability in anaerobic digestion. Biotechnol. Biofuels 11, 274 (2018). https://doi.org/10.1186/s13068-018-1279-5

    Article  Google Scholar 

  32. Sun, L., Liu, T., Muller, B., Schnurer, A.: The microbial community structure in industrial biogas plants influences the degradation rate of straw and cellulose in batch tests. Biotechnol. Biofuels 9, 128 (2016). https://doi.org/10.1186/s13068-016-0543-9

    Article  Google Scholar 

  33. Goux, X., Calusinska, M., Lemaigre, S., Marynowska, M., Klocke, M., Udelhoven, T., Benizri, E., Delfosse, P.: Microbial community dynamics in replicate anaerobic digesters exposed sequentially to increasing organic loading rate, acidosis, and process recovery. Biotechnol. Biofuels 8, 122 (2015). https://doi.org/10.1186/s13068-015-0309-9

    Article  Google Scholar 

  34. Lim, J.W., Chen, C.L., Ho, I.J.R., Wang, J.Y.: Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 147, 193–201 (2013). https://doi.org/10.1016/j.biortech.2013.08.038

    Article  Google Scholar 

  35. Riviere, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., Li, T., Camacho, P., Sghir, A.: Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3(6), 700–714 (2009). https://doi.org/10.1038/ismej.2009.2

    Article  Google Scholar 

  36. Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., White, B.A.: Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6(2), 121–131 (2008). https://doi.org/10.1038/nrmicro1817

    Article  Google Scholar 

  37. Zhao, X., Liu, J., Liu, J., Yang, F., Zhu, W., Yuan, X., Hu, Y., Cui, Z., Wang, X.: Effect of ensiling and silage additives on biogas production and microbial community dynamics during anaerobic digestion of switchgrass. Bioresour. Technol. 241, 349–359 (2017). https://doi.org/10.1016/j.biortech.2017.03.183

    Article  Google Scholar 

  38. Tian, G., Zhang, W., Dong, M., Yang, B., Zhu, R., Yin, F., Zhao, X., Wang, Y., Xiao, W., Wang, Q., Cui, X.: Metabolic pathway analysis based on high-throughput sequencing in a batch biogas production process. Energy 139, 571–579 (2017). https://doi.org/10.1016/j.energy.2017.08.003

    Article  Google Scholar 

  39. Shi, X., Ng, K.K., Li, X.R., Ng, H.Y.: Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment. Environ. Sci. Technol. 49(10), 6231–6239 (2015). https://doi.org/10.1021/acs.est.5b00546

    Article  Google Scholar 

  40. Yuan, Y., Wen, H., Huang, X., Li, Z., Liu, X., Li, D., Yan, Z.: Biogas production using cornstalks and prokaryotic community composition (in Chinese). CIESC Journal 65(5), 1784–1791 (2014)

    Google Scholar 

  41. Xu, Z., Yuan, H., Li, X.: Anaerobic bioconversion efficiency of rice straw in continuously stirred tank reactor systems applying longer hydraulic retention time and higher load: One-stage vs. Two-stage. Bioresour. Technol. 321, 124206 (2021). https://doi.org/10.1016/j.biortech.2020.124206

    Article  Google Scholar 

  42. Lee, B., Park, J.G., Shin, W.B., Tian, D.J., Jun, H.B.: Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresour. Technol. 234, 273–280 (2017). https://doi.org/10.1016/j.biortech.2017.02.022

    Article  Google Scholar 

  43. Li, J., Rui, J., Pei, Z., Sun, X., Zhang, S., Yan, Z., Wang, Y., Liu, X., Zheng, T., Li, X.: Straw- and slurry-associated prokaryotic communities differ during co-fermentation of straw and swine manure. Appl. Microbiol. Biotechnol. 98(10), 4771–4780 (2014). https://doi.org/10.1007/s00253-014-5629-3

    Article  Google Scholar 

  44. Gagliano, M.C., Ismail, S.B., Stams, A.J.M., Plugge, C.M., Temmink, H., Van Lier, J.B.: Biofilm formation and granule properties in anaerobic digestion at high salinity. Water Res. 121, 61–71 (2017). https://doi.org/10.1016/j.watres.2017.05.016

    Article  Google Scholar 

  45. Garcia, J.L., Patel, B.K.C., Ollivier, B.: Taxonomic phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6(4), 205–226 (2000). https://doi.org/10.1006/anae.2000.0345

    Article  Google Scholar 

  46. Conklin, A., Stensel, H.D., Ferguson, J.: Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ. Res. 78(5), 486–496 (2006). https://doi.org/10.2175/106143006X95393

    Article  Google Scholar 

Download references

Funding

This study was supported by the Intergovernmental International Cooperation on Science and Technology Key Innovation Project from the Ministry of Science and Technology of the People Republic of China (grant number 2018YFE0111000).

Author information

Authors and Affiliations

Authors

Contributions

YL: Conceptualization; Methodology; Investigation; Writing—original draft. JM: Writing—review& editing. HY: Writing—review& editing; XL: Conceptualization; Methodology; Supervision.

Corresponding author

Correspondence to Xiujin Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ma, J., Yuan, H. et al. Effects of Feeding Regimes on Process Performance and Microbial Community Structure in Anaerobic Semi-continuously Stirred Tank Reactors Treating Corn Stover. Waste Biomass Valor 13, 1003–1014 (2022). https://doi.org/10.1007/s12649-021-01573-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01573-0

Keywords

Navigation