Skip to main content
Log in

Mesoporous Silica from Parangtritis Beach Sand Templated by CTAB as a Support of Mo Metal as a Catalyst for Hydrocracking of Waste Palm Cooking Oil into Biofuel

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, natural source Parangtritis beach sand was extracted into mesoporous silica (MS). Synthesis of mesoporous silica (MS) was carried out at sodium silicate: CTAB ratio of 1:0.5 (w/w). Monometallic catalyst was used to improve the performance of the catalyst. The monometallic used was Mo metal, which was synthesized using the wet impregnation method. Catalysts were characterized using FTIR, XRD, Surface Area Analyzer (SAA), SEM–EDX, and TEM. MS has pore diameters and surface area of 2.62 nm and 897.3 m2/g, respectively. Mo/MS has pore diameters, surface area, and Mo metal concentration of 2.46 nm, 593 m2/g, and 4.75%, respectively. Catalytic activity and selectivity were evaluated in hydrocracking of waste palm cooking oil at 500, 550, and 600 °C, and catalyst: waste palm cooking oil ratio of 1:100, 1:200, and 1:300. The best catalyst will be tested for reusability 3 times through the hydrocracking process. Mo/MS produces better liquid products and hydrocarbon compounds than MS. The results of the conversion of liquid products analyzed using GCMS. The yield of liquid products obtained in the hydrocracking of waste palm cooking oil using Mo/MS with the optimum temperature and the weight ratio of catalyst: feed at 550 °C and 1: 300 was 66.99 wt.% with consists of hydrocarbon compound as 62.79 wt.%. The yield of liquid products obtained in the hydrocracking waste palm cooking oil using the used Mo/MS catalyst in the last run was 80.26 wt.% with consist of hydrocarbon compound as 74.13 wt.%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availbility

Data and materials are available and prepared, authors will be pleased to provide it if requested during the publication process.

References

  1. Zhang, H., Wang, Q., Mortimer, S.R.: Waste cooking oil as an energy resources: review of Chinese policies. Renew. Sustain. Energ. Rev. 16, 5225–5231 (2012). https://doi.org/10.1016/j.rser.2012.05.008

    Article  Google Scholar 

  2. Sanjid, A., Masjuki, H.H., Kalam, M.A., Rahman, S.M.A., Abedin, M.J., Palash, S.M.: Impact of palm mustard, mustard, waste cooking oil and Calophylum inophylum biofuels on performance and emission of Cl engine. Renew. Sustain. Energ. Rev. 27, 664–682 (2013). https://doi.org/10.1016/j.rser.2013.07.059

    Article  Google Scholar 

  3. Chuepeng, S., Komintarachat, C.: Insterfication otimization of waste cooking oil and ethyl acetate over homogeneous catalyst for biofuel production with engine validation. Appl. Energy 232, 728–739 (2018)

    Article  Google Scholar 

  4. Wang, Y., Cao, Y., Li, J.: Preparation of biofuels with waste cooking oil by fluid catalytic cracking: The effect of catalyst performance on the products. Renew. Energ. 124, 34–39 (2018). https://doi.org/10.1016/j.renene.201708.084

    Article  Google Scholar 

  5. Trabelsi, A.B.H., Zaafouri, K., Baghdadi, W., Naoui, S., Ouerghi, A.: Second generation biofuels production from waste cooking oil via pyrolisis process. Renew. Energ. 126, 888–896 (2018). https://doi.org/10.1016/j.renene.2018.04.002

    Article  Google Scholar 

  6. Barrón, A.,E., Melo-Banda, J.A., Dominguez, J.M., Hernández, E., Silva. R., T. Reyes A.I., M. Meraz M.A.: Catalytic hydrocracking of vegetable oil agrofuels production using Ni-Mo, Ni-W, Pt , dan TFA catalysts supported on SBA-15. Catal. Today 166, 102–110 (2011). https://doi.org/10.1016/j.cattod.2011.01.026

  7. Dik, P.P., Danilova, I.G., Golubev, I.S., Kazakov, M.O., Nadeina, K.A., Budukva, S.V., Pereyma, V.Y., Klimov, O.V., Prosvirin, I.P., Gerasimov, E.Y., Bok, T.O., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., Noskov, A.S.: Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties. Fuel 237, 178–190 (2019). https://doi.org/10.1016/j.fuel.2018.10.012

    Article  Google Scholar 

  8. Kim, H., Kang, B., Kim, M., Park, Y.M., Kim, D., Lee, J., Lee, K.: Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal. Today 95, 315–320 (2004). https://doi.org/10.1016/jcattod.2004.06.007

    Article  Google Scholar 

  9. Cao, X., Li, L., Yu, S., Liu, S., Yu, H., Wu, Q.: Catalytic conversion of waste cooking oils for the production of liquid hydrocarbon biofuels using in-situ coating metal oxide on SBA-15 as heterogeneous catalyst. J. Anal. Appl. Pyrolisis 138, 137–144 (2019). https://doi.org/10.1016/j.jaap.2018.12.017

    Article  Google Scholar 

  10. Santi, D., Trisunaryanti, W., Falah, I.I.: Hydrocracking of pyrolyzed α-cellulose to hydrocarbon over MxOy/Mesoporous carbon catalyst (M = Co and Mo): Synthesis and characterization of carbon based catalyst support from saw waste of Merbau. J. Environ. Chem. Eng. 8, 103735 (2020). https://doi.org/10.1016/j.jece.2020.1037

    Article  Google Scholar 

  11. Shin, S., Lee, J.H., Jo, Y.K., Nguyen, M.T., Park, B.K., Park, S., Lee, C.W., Kim, C.G., Chung, T.: Synthesis noble molybdenum and tungsten complexes for hydrocracking catalyst of heavy oil. J. Ind. Eng. Chem. 72, 408–413 (2019). https://doi.org/10.1016/j.jiec.2018.12.043

    Article  Google Scholar 

  12. Ramesh, A., Tamizhdurai, P., Krishnan, P.S., Ponnusamy, V.K., Sakthianthan, S., Shanthi, K.: Catalytic transformation of non edible oils tobiofuels through hydrodeoxygenation using Mo-Ni mesoporous alumina-silica catalysts. Fuel 262, 116494 (2020). https://doi.org/10.1016/j.fuel.2019.116494

    Article  Google Scholar 

  13. Infantes-Molina, A., Mérida-Robles, J., Rodríguez-Castellón, E., Pawelec, B., Fierro, J.L.G., Jiménez-López, A.: Catalyst based on Co/zirconium doped mesoporous silica MSU for the hydrogenation and hydrogenolysis/hydrocracking of tetralin. Appl. Catal. A 286, 239–248 (2007). https://doi.org/10.1016/j.apacata.2005.03.022

    Article  Google Scholar 

  14. Trisunaryanti, W., Larasati, S., Bahri, S., Ni’mah, Y.L., Efiyanti, L., Amri, K., Nuryanto, R., Sumbogo, S.D.: Performance comparison of Ni-Fe loaded on NH2-functionalized mesoporous silica and beach sand in the hydrotratment of waste palm cooking oil. J. Environ. Chem. Eng. 8, 104477 (2020). https://doi.org/10.1016/j.jece.2020.104477

    Article  Google Scholar 

  15. Jiang, B., Zhu, T., Song, H., Li, F.: Hydrodeoxygenation and hydrodesulfurization over Fe promoted Ni2P/SBA-15 catalyst. J. Alloys Compd. 806, 254–262 (2019). https://doi.org/10.1016/j.alcom.2019.07.242

    Article  Google Scholar 

  16. Barbosa, F.A., Santos, A.C.B., Silva, M.I.P., Stumbo, A.M.: Resistance to poisoning by nitrogen compounds of NiMo/Al-MCM-41 hydrocracking catalysts. Catal. Today 98, 109–113 (2004). https://doi.org/10.1016/j.cattod.2004.07.025

    Article  Google Scholar 

  17. Seo, M., Lee, D., Lee, K., Moon, D.J.: Pt/Al-SBA-15 catalysts for hydrocracking of C21–C34 n-paraffin mixture into gasoline and diesel fractions. Fuel 143, 63–71 (2015). https://doi.org/10.1016/j.fuel.2014.11.028

    Article  Google Scholar 

  18. Dar, A.D., Mohsin, M., Basit, A., Farooqui, M.: Sand: A natural and potential catalyst in renowned Friedel Craft’s acylation of aromatic compounds. J. Saudi Chem. Soc. 17(2), 177–180 (2013). https://doi.org/10.1016/j.jscs.2011.03.004

    Article  Google Scholar 

  19. Darghouth, A., Aouida, S., Bessais, B.: High purity porous silicon powder synthesis by magnesiothermic reduction of Tunisian silica sand. SILICON 13, 667–676 (2021). https://doi.org/10.1007/s12633-020-00433-1

    Article  Google Scholar 

  20. Subsadsana, M., Kham-or, P., Sangdara, P., Suwannasom, P., Ruangviriyachai, C.: Synthesis and catalytic performance of biometallic NiMo- and NiW-ZSM-5/MCM-41 composites for production of liquid biofuels. J. Fuel Chem. Technol. 45(7), 805–816 (2017). https://doi.org/10.1016/S1872-5813(17)30039-7

    Article  Google Scholar 

  21. Kusumastuti, H., Trisunaryanti, W., Falah, I.I., Marsuki, M.F.: Synthesis or mesoporous silica-alumina from lapindo mud as a support of Ni and Mo metals catalysts for hydrocracking of pyrolyzed α-cellulose. Rassayan J. Chem. 11(2), 522–530 (2018). https://doi.org/10.7324/RJC.2018.1122061

    Article  Google Scholar 

  22. Luts, T., Suprun, W., Hofmann, D., Klepel, O., Papp, H.: Epoxidation of olefins catalyzed by novel Mn(III) and Mo(IV) Salen complexes immobilized on mesoporous silica gel Part I. Synthesis and characterization of homogeneous and immobilized Mn(III) and Mo(IV) Salen complexes. J. Mol. Catal. A Chem. 261, 16–23 (2007). https://doi.org/10.1016/j.molcata.2006.07.035

    Article  Google Scholar 

  23. Ghorbani, F., Younesi, H., Mehraban, Z., Çelik, M.S., Ghoreyshi, A.A., Anbia, M.: Preparation and characterization of highly pure silica from sedge as agricultural waste and its utilization in synthesis of mesoporous silica MCM-41. J. Taiwan Inst. Chem. Eng. 44, 821–828 (2013). https://doi.org/10.1016/j.jtice.2013.01.019

    Article  Google Scholar 

  24. Bai, K., Hao, J., Yang, Y., Qian, A.: The eefect of hydrotermal temperature on the properties of SBA-15 materials. Heliyon 6, e04436 (2020). https://doi.org/10.1016/j.heliyon.2020.e04436

    Article  Google Scholar 

  25. Akbari, A., Omidkhah, M., Darian, J.T.: Investigation of process variables and intesification effects of ultrasound applied in oxidative desulfurization of model diesel over MoO3/Al2O3 catalyst. Ultrason. Sonochem. 21, 692–705 (2014). https://doi.org/10.1016/j.ultsonch.2013.10.004

    Article  Google Scholar 

  26. Méndez, F.J., Franco-López, O.E., Díaz, G., Gómez-Cortés, A., Bokhimi, X., Klimova, T.E.: On the role of niobium in nanostructured Mo/Nb-MCM-41 and NiMo/Nb-MCM-41 catalysts for hydrodesulfurization of dibenzthiophene. Fuel 280, 118550 (2020). https://doi.org/10.1016/j.fuel.2020.118550

    Article  Google Scholar 

  27. He, K., Chen, N., Wang, C., Wei, L., Chen, J.: Method for determining crystal grain size by X-ray diffraction. Cryst. Res. Tecnol. 1700157, 1–6 (2018)

    Google Scholar 

  28. Peng, H., Min, L., Qiu-lian, C.: MoO3/Al-SBA-15 modified catalyst and its application in coal tar hydrocracking. J. Fuel Chem. Technol. 48(9), 1079–1086. https://doi.org/10.1016/S1872-5813(20)30072-4

  29. Khojastehnezhad, A., Moeinpour, F., Vafaei, M.: Molybdenum oxide support on silica (MoO3/SiO2): An efficient and reusable catalyst for the synthesis of 1,8-dioxodecahydroacrdines under solvent free conditions. J. Mex. Chem. Soc. 59(1), 29–35 (2015). https://doi.org/10.29356/jmcs.v59i1.11

  30. Dhar, G.M., Kumaran, G.M., Kumar, M., Rawat, K.S., Sharma, L.D., Raju, B.D., Rao, K.S.R.: Physico-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotrating catalyst. Catal. Today 99, 309–314 (2005). https://doi.org/10.1016/j.cattod.2004.10.005

    Article  Google Scholar 

  31. Zhao, X., Wei, L., Cheng, S., Kadis, E., Cao, Y., Boakye, E., Gu, Z., Julson, J.: Hydroprocessing of carinata oil for hydrocarbon biofuel over Mo-Zn/Al2O3. Appl. Catal. B, Environ. 196, 41–49 (2016). https://doi.org/10.1016/j.apcatb.2016.05.020

  32. Jeong, H., Shin, M., Jeong, B., Jang, J.H., Han, G.B., Suh, Y.: Comparison of activity and stability of supported Ni2P and Pt catalysts in the hydroprocessing palm oil into normal paraffins. J. Ind. Eng. Chem. 83, 189–199 (2020). https://doi.org/10.1016/j.jiec.2019.11.027

    Article  Google Scholar 

  33. Phimsen, S., Kiatkittipong, W., Yamada, H., Tagawa, T., Kiatkittipong, K., Laosiripojana, N., Assabumrungrat, S.: Oil extracted from spent cofee grounds for bio-hydrotreated diesel production. Energy Convers. Manage 125 (2016). https://doi.org/10.1016/j.encoman.2016.08.085

  34. Han-u-domlarpyos, V., Kuchonthara, P., Reubroycharoen, P., Hinchiranan, N.: Quality improvement of oil palm shell-derived pyrolisis oil via catalytic deoxygenation over NiMoS/γ-Al2O3. Fuel 143, 512–518 (2015). https://doi.org/10.1016/j.fuel.2014.11/068

    Article  Google Scholar 

  35. Barbera, E., Naurzaliyev, R., Asiedu, A., Bertucco, A., Resurreccion, E.P., Kumar, S.: Techno-economic analysis and life-cycle assessment of jet fuels production from waste cooking oil via in situ catalytic transfer hydrogenation. Renew. Energ. 160, 428–449 (2020). https://doi.org/10.1016/j.renene.2020.06.077

    Article  Google Scholar 

  36. Burimsitthigul, T., Yoosuk, B., Ngamcharussrivichai, C., Prasassarakich, P.: Hydrocarbon biofuel from hydrotrating of palm oil over unsupported Ni-Mo sulfide catalysts. Renew. Energ. 163, 1648–1659 (2021). https://doi.org/10.1016/j.renene.2020.10.044

    Article  Google Scholar 

  37. Pongsendana, M., Trisunaryanti, W., Artanti, F.W., Falah, I.I.: Sutarno: Hydrocracking waste lubricant into gasoline over CoMo catalyst supported on mesoporous carbon from bovine bone gelatin. Korean J. Chem 34, 2591–2596 (2017). https://doi.org/10.1007/s11814-017-0165-3

    Article  Google Scholar 

  38. Ahmadi, S., Yuan, Z., Rohani, S., Xu, C.: Effects of nano-structured CoMo catalysts on hydrodeoxygenation of fast pyrolisis oil in dupercritical ethanol. Catal. Today 269, 182–194 (2015). https://doi.org/10.1016/j.cattod.2015.08.040

    Article  Google Scholar 

  39. Taufiqurrahmi, N., Mohamed, A.R., Bhatia, S.: Deactivation and coke combustion studies of nanocrystalline zeolite beta in catalytic cracking of used palm oil. Chem. Eng. J. 163, 413–421 (2010). https://doi.org/10.1016/j.cej.2010.07.049

    Article  Google Scholar 

  40. Rodríguez, E., Elordi, G., Valecillos, J., Izaddoust, S., Bilbao, J., Arandes, J.M., Castaṅo, P.: Coke deposition and product distribution in the co-cracking of waste polyolefin derived streams and vacuum gas oil under FCC unit conditions. Fuel Process. Technol. 192, 130–139 (2019). https://doi.org/10.1016/j.fuproc.2019.04.012

    Article  Google Scholar 

  41. Zhang, X., Chen, Q., Zhang, Q., Wang, C., Ma, L., Xu, Y.: Conversion of pyrolytic lignin to aromatic hydrocarbons by hydrocracking over pristine MoO3 catalyst. J. Anal. Appl. Pyro. 135, 60–66 (2018). https://doi.org/10.1016/j.jaap.2018.09.020

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Universitas Gadjah Mada Indonesia for the financial support of Rekognisi Tugas Akhir Universitas Gadjah Mada 2020.

Funding

This scientific publication is funded by the Universitas Gadjah Mada Indonesia.

Author information

Authors and Affiliations

Authors

Contributions

GDA: Investigation, Methodology, Formal analysis, Visualization, Writing—original draft. WT: Conceptualization, Supervision, Resources, Methodology, Writing—review and editing. AS: Investigation, Validation.

Corresponding author

Correspondence to Wega Trisunaryanti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to Participate

All authors have made a significant contribution to this manuscript, have seen and approved the final manuscript.

Consent for Publication

All authors have agreed to submit this manuscript to the Journal of Porous Materials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alisha, G.D., Trisunaryanti, W. & Syoufian, A. Mesoporous Silica from Parangtritis Beach Sand Templated by CTAB as a Support of Mo Metal as a Catalyst for Hydrocracking of Waste Palm Cooking Oil into Biofuel. Waste Biomass Valor 13, 1311–1321 (2022). https://doi.org/10.1007/s12649-021-01559-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01559-y

Keywords

Navigation