Skip to main content
Log in

Pilot-Scale Integrated Membrane System for the Separation and Concentration of Compounds of Industrial Interest from Tortilla Industry Wastewater (Nejayote)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of the performance of a pilot-scale membrane system to separate and concentrate arabinoxylans, hydroxycinnamic acids and fermentable sugars from nejayote.

Methods

Total suspended solids (TSS) from nejayote were removed by a novel enzymatic process to avoid UF-membrane fouling (Asaff and Reyes 2015; modified to pilot-scale). The free-TSS nejayote was submitted to ultrafiltration and diafiltration processes (5 kDa MWCO polyethersulfone membrane) to separate and concentrate arabinoxylans. Reverse osmosis (cross-linked polyamide membrane) was performed to concentrate hydroxycinnamic acids and fermentable sugars (MW < 5 kDa) from ultrafiltration permeates.

Results

TSS remotion was highly efficient (final content < 15 ppm). The ultrafiltration permeate flux showed a linear decrease as the °Brix and volume reduction factor (VRF) increased (1.0–2.4). Furthermore, the ultrafiltration membrane, showed the highest rejection (72%) for long-chain arabinoxylans compared to hydroxycinnamic acids and sugars, therefore, their concentration (33.32 g/L) in the retentate was 1.8-fold higher than in the feed. Moreover, arabinoxylans were further purified to 83.2% diafiltering the retentate.

In contrast, the reverse osmosis permeate flux decreased exponentially as the °Brix and VRF increased, indicating a fouling phenomenon possibly due to molecular interactions of hydroxycinnamic acids, sugars, and their oligomers with the membrane surface. In this way, their concentrations in the retentate were almost 2-fold higher than in the feed.

Conclusion

The performance of the pilot-scale integrated membrane system showed that it is a technically feasible method to separate and concentrate compounds of industrial interest from nejayote despite the limitations related primarily to membrane fouling and adsorption of hydroxycinnamic acids.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All relevant data are included in the article and/or its supplementary information files.

References

  1. Argun, M.S., Argun, M.E.: Treatment and alternative usage possibilities of a special wastewater: Nejayote. J. Food Process Eng. (2018). https://doi.org/10.1111/jfpe.12609

    Article  MATH  Google Scholar 

  2. Cortés-Gómez, A., San Martın-Martınez, E., Martınez-Bustos, F., Vázquez-Carrillo, G.M.: Tortillas of blue maize (Zea mays L.) prepared by a fractionated process of nixtamalization: analysis using response surface methodology. J. Food Eng. (2005). https://doi.org/10.1016/j.jfoodeng.2004.03.018

    Article  Google Scholar 

  3. Tortilla Industry Association. https://www.tortilla-info.com/. Accessed September 2020

  4. Sefa-Dedeh, S., Cornelius, B., Sakyi-Dawson, E., Afoakwa, E.O.: Effect of nixtamalization on the chemical and functional properties of maize. Food Chem. (2004). https://doi.org/10.1016/j.foodchem.2003.08.033

    Article  Google Scholar 

  5. Ramírez-Araujo, H., Gaytán-Martínez, M., Reyes-Vega, M.: Alternative technologies to the traditional nixtamalization process. Trends Food Sci. Technol. (2019). https://doi.org/10.1016/j.tifs.2018.12.007

    Article  Google Scholar 

  6. Pflugfelder, R., Rooney, L., Waniska, R.: Dry matter losses in commercial corn masa production. Cereal Chem. 65(2), 127–132 (1988)

    Google Scholar 

  7. Rosentrater, K.A.: A review of corn masa processing residues: Generation, properties, and potential utilization. Waste Manage. (2006). https://doi.org/10.1016/j.wasman.2005.03.010

    Article  Google Scholar 

  8. Valderrama-Bravo, C., Gutiérrez-Cortez, E., Contreras-Padilla, M., Rojas-Molina, I., Mosquera, J., Rojas-Molina, A., Beristain, F., Rodríguez-García, M.: Constant pressure filtration of lime water (nejayote) used to cook kernels in maize processing. J. Food Eng. (2012). https://doi.org/10.1016/j.jfoodeng.2011.12.018

    Article  Google Scholar 

  9. Gutiérrez-Uribe, J.A., Rojas-García, C., García-Lara, S., Serna-Saldivar, S.O.: Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. J. Cereal Sci. (2010). https://doi.org/10.1016/j.jcs.2010.07.003

    Article  Google Scholar 

  10. González-Martinez, S.: Biological treatability of the wastewaters from the alkaline cooking of maize (Indian corn). Environ. Technol. (1984). https://doi.org/10.1080/09593338409384287

    Article  Google Scholar 

  11. Salmerón-Alcocer, A., Rodríguez-Mendoza, N., Pineda-Santiago, V., Cristiani-Urbina, E., Juárez-Ramírez, C., Ruiz-Ordaz, N., Galíndez-Mayer, J.: Aerobic treatment of maize-processing wastewater (nejayote) in a single-stream multi-stage bioreactor. J. Environ. Eng. Sci. (2003). https://doi.org/10.1139/s03-046

    Article  Google Scholar 

  12. Pedroza-Islas, R., de Bazúa, C.D.: Aerobic treatment of maize-processing wastewater in a 50-liter rotating biological reactor. Biol. Wastes (1990). https://doi.org/10.1016/0269-7483(90)90069-5

    Article  Google Scholar 

  13. Civit, E., de Bazúa, C.D., Engelmann, G., González, S., Hartmann, L.: Anaerobic treatment of maize processing waste water (Nejayote) in a packed bed reactor cascade. Environ. Technol. (1984). https://doi.org/10.1080/09593338409384257

    Article  Google Scholar 

  14. Meraz, K.A.S., Vargas, S.M.P., Maldonado, J.T.L., Bravo, J.M.C., Guzman, M.T.O., Maldonado, E.A.L.: Eco-friendly innovation for nejayote coagulation–flocculation process using chitosan: Evaluation through zeta potential measurements. Chem. Eng. J. (2016). https://doi.org/10.1016/j.cej.2015.09.026

    Article  Google Scholar 

  15. Viniegra-González, G., Ramírez-Romero, M.A.: Proceso de utilización del nejayote. MX/A/2007/010310 (2007)

  16. Valderrama-Bravo, C., Gutiérrez-Cortez, E., Contreras-Padilla, M., Oaxaca-Luna, A., Del Real López, A., Espinosa-Arbelaez, D., Rodríguez-García, M.: Physico-mechanic treatment of nixtamalization by-product (nejayote). CyTA-J. Food (2013). https://doi.org/10.1080/19476337.2013.781680

    Article  Google Scholar 

  17. Ramírez, K., Rangel-Peraza, J.G., Bustos-Terrones, Y.A., Aguayo Rojas, J., Rochín Medina, J.J.: Effect of different salts on total phenolic compounds and their bioactivity during the development of a sustainable nixtamalization process using a fractional factorial design. J. Food Process. Preserv. (2018). https://doi.org/10.1111/jfpp.13681

    Article  Google Scholar 

  18. Ramírez-Jiménez, A.K., Castro-Muñoz, R.: Emerging techniques assisting nixtamalization products and by-products processing: an overview. Crit. Rev. Food Sci. Nutr. (2020). https://doi.org/10.1080/10408398.2020.1798352

    Article  Google Scholar 

  19. INEGI. Directorio Estadístico Nacional de Unidades Económicas. https://www.inegi.org.mx/. Accessed March 2021

  20. Asaff, A., de la Torre, M., Macías, R.: Proceso para la recuperación de ácido ferúlico. WO 2004/110975 A1 (2004)

  21. Reyes-Vidal, M.Y., Diez, Á.A., Martínez-Silva, A., Asaff, A.: Investigación, desarrollo tecnológico e innovación para el cuidado y reuso del agua. Estudios Sociales. 2, 203–216 (2012)

    Google Scholar 

  22. Asaff, A., Aceves, A., Asaff, S., Reyes, Y.: Método para el acondicionamiento de aguas residuales de la industria del nixtamal, la masa y la tortilla. MX/A/2013/00943 (2013)

  23. Asaff, A., Reyes, Y.: Method and system for the integral treatment of wastewater from the maize industry. US20150368138A1 (2015)

  24. Arellano, M., Valenzuela, U., Mateos, J.C., Asaff, A., Contreras, V.: Proceso para la produccion de bioetanol, biomasa celular y otros metabolitos a partir de la fracción insoluble de nejayote. MX/a/2017/016584 (2017)

  25. Castro-Muñoz, R., Fíla, V., Durán-Páramo, E.: A review of the primary by-product (Nejayote) of the nixtamalization during maize processing: Potential reuses. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-017-0029-4

    Article  Google Scholar 

  26. Ursino, C., Castro-Muñoz, R., Drioli, E., Gzara, L., Albeirutty, M.H., Figoli, A.: Progress of nanocomposite membranes for water treatment. Membranes (2018). https://doi.org/10.3390/membranes8020018

    Article  Google Scholar 

  27. Castro-Muñoz, R., Boczkaj, G., Gontarek, E., Cassano, A., Fíla, V.: Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends Food Sci. Technol. (2020). https://doi.org/10.1016/j.tifs.2019.12.003

    Article  Google Scholar 

  28. Schwinge, J., Neal, P., Wiley, D., Fletcher, D., Fane, A.: Spiral wound modules and spacers: review and analysis. J. Membr. Sci. (2004). https://doi.org/10.1016/j.memsci.2003.09.031

    Article  Google Scholar 

  29. Berlanga-Reyes, C.M., Carvajal-Millán, E., Lizardi-Mendoza, J., Rascón-Chu, A., Marquez-Escalante, J.A., Martínez-López, A.L.: Maize arabinoxylan gels as protein delivery matrices. Molecules (2009). https://doi.org/10.3390/molecules14041475

    Article  Google Scholar 

  30. Niño-Medina, G., Carvajal-Millán, E., Rascon-Chu, A., Marquez-Escalante, J.A., Guerrero, V., Salas-Munoz, E.: Feruloylated arabinoxylans and arabinoxylan gels: structure, sources and applications. Phytochem. Rev. (2010). https://doi.org/10.1007/s11101-009-9147-3

    Article  Google Scholar 

  31. Masaji, Y.: Preservation measures for food products Preventive method of coloring agricultural products using ferulic acid. Tech. J. Food Chem. 8, 76–79 (1999)

    Google Scholar 

  32. Kumar, N., Pruthi, V.: Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (2014). https://doi.org/10.1016/j.btre.2014.09.002

    Article  Google Scholar 

  33. Ou, S., Kwok, K.C.: Ferulic acid: pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. (2004). https://doi.org/10.1002/jsfa.1873

    Article  Google Scholar 

  34. Mori, T., Koyama, N., Guillot-Sestier, M.-V., Tan, J., Town, T.: Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0055774

    Article  Google Scholar 

  35. Peña-Torres, E.F., Dávila-Ramírez, J.L., Peña-Ramos, E.A., Valenzuela-Melendres, M., Pinelli-Saavedra, A., Avendaño-Reyes, L., González-Ríos, H.: Effects of dietary ferulic acid on growth performance, carcass traits and meat quality of heifers. J. Sci. Food Agric. (2020). https://doi.org/10.1002/jsfa.10666

    Article  Google Scholar 

  36. Asaff, A., Alejo Castillo, M.L., Herrera Herrera, R.: Method for accelerating the muscle development, reducing fat deposits and improving the feed efficiency in pigs. US20110046224A1 (2011)

  37. Zduńska, K., Dana, A., Kolodziejczak, A., Rotsztejn, H.: Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Phys. (2018). https://doi.org/10.1159/000491755

    Article  Google Scholar 

  38. Taofiq, O., González-Paramás, A.M., Barreiro, M.F., Ferreira, I.C.: Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review. Molecules (2017). https://doi.org/10.3390/molecules22020281

    Article  Google Scholar 

  39. Baqueiro-Peña, I., Contreras-Jácquez, V., Kirchmayr, M.R., Mateos-Díaz, J.C., Valenzuela-Soto, E.M., Asaff-Torres, A.: Isolation and characterization of a new ferulic-acid-biotransforming Bacillus megaterium from maize alkaline wastewater (nejayote). Curr. Microbiol. (2019). https://doi.org/10.1007/s00284-019-01726-4

    Article  Google Scholar 

  40. Contreras-Jácquez, V., Rodríguez-González, J., Mateos-Díaz, J.C., Valenzuela-Soto, E.M., Asaff-Torres, A.: Differential activation of ferulic acid catabolic pathways of Amycolatopsis sp. ATCC 39116 in submerged and surface cultures. Appl. Biochem. Biotech. (2020). https://doi.org/10.1007/s12010-020-03336-4

    Article  Google Scholar 

  41. Castro-Muñoz, R., Yáñez-Fernández, J.: Valorization of nixtamalization wastewaters (Nejayote) by integrated membrane process. Food Bioprod. Process. (2015). https://doi.org/10.1016/j.fbp.2015.03.006

    Article  Google Scholar 

  42. Castro-Muñoz, R., Barragán-Huerta, B.E., Yáñez-Fernández, J.: The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste Biomass Valor. (2016). https://doi.org/10.1007/s12649-016-9512-6

    Article  Google Scholar 

  43. Castro-Muñoz, R., Barragán-Huerta, B.E., Fíla, V., Denis, P.C., Ruby-Figueroa, R.: Current role of membrane technology: from the treatment of agro-industrial by-products up to the valorization of valuable compounds. Waste Biomass Valor. (2018). https://doi.org/10.1007/s12649-017-0003-1

    Article  Google Scholar 

  44. Shi, X., Tal, G., Hankins, N.P., Gitis, V.: Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process. Eng. (2014). https://doi.org/10.1016/j.jwpe.2014.04.003

    Article  Google Scholar 

  45. Kamali, M., Suhas, D., Costa, M.E., Capela, I., Aminabhavi, T.M.: Sustainability considerations in membrane-based technologies for industrial effluents treatment. Chem. Eng. J. (2019). https://doi.org/10.1016/j.cej.2019.02.075

    Article  Google Scholar 

  46. Cissé, M., Vaillant, F., Pallet, D., Dornier, M.: Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L). Food Res. Int. (2011). https://doi.org/10.1016/j.foodres.2011.04.046

    Article  Google Scholar 

  47. AOAC: Official methods of analysis of AOAC International (16th edn.). Arlington, MA: Association of Official Analytical Chemists (1995).

  48. APHA: Standard Methods for the Examination of Water and Wastewater (19th edn.). Washington, DC: American Public Healt Association (1995).

  49. Miller, G.: Determination of reducing sugar by DNS method. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  50. Carvajal Millan, E., Rascon Chu, A., Marque Escalante, J.A.: Método para la obtención de goma de maíz a partir del líquido residual de la nixtamalización del grano de maíz. MXPA05008124A (2005)

  51. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3), 144–158 (1965)

    Google Scholar 

  52. Paz-Samaniego, R., Carvajal-Millan, E., Sotelo-Cruz, N., Brown, F., Rascón-Chu, A., López-Franco, Y.L., Lizardi-Mendoza, J.: Maize processing waste water upcycling in Mexico: Recovery of arabinoxylans for probiotic encapsulation. Sustainability (2016). https://doi.org/10.3390/su8111104

    Article  Google Scholar 

  53. Ramírez-Romero, G., Reyes-Velazquez, M., Cruz-Guerrero, A.: Estudio del nejayote como medio de crecimiento de probióticos y producción de bacteriocinas. Rev. Mex. Ing. Quim. 12(3), 463–471 (2013)

    Google Scholar 

  54. Lopez-Martinez, L.X., Oliart-Ros, R.M., Valerio-Alfaro, G., Lee, C.-H., Parkin, K.L., Garcia, H.S.: Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT-Food Sci. Technol. (2009). https://doi.org/10.1016/j.lwt.2008.10.010

    Article  Google Scholar 

  55. Boz, H.: Ferulic acid in cereals-a review. Czech J. Food Sci. (2015). https://doi.org/10.17221/401/2014-CJFS

    Article  Google Scholar 

  56. Bento-Silva, A., Patto, M.C.V., do Rosário Bronze, M.: Relevance, structure and analysis of ferulic acid in maize cell walls. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.11.012

    Article  Google Scholar 

  57. Acosta-Estrada, B.A., Serna-Saldívar, S.O., Gutiérrez-Uribe, J.A.: Chemopreventive effects of feruloyl putrescines from wastewater (Nejayote) of lime-cooked white maize (Zea mays). J. Cereal Sci. (2015). https://doi.org/10.1016/j.jcs.2015.04.012

    Article  Google Scholar 

  58. Xu, P., Bellona, C., Drewes, J.E.: Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: membrane autopsy results from pilot-scale investigations. J. Membr. Sci. (2010). https://doi.org/10.1016/j.memsci.2010.02.037

    Article  Google Scholar 

  59. Conidi, C., Mazzei, R., Cassano, A., Giorno, L.: Integrated membrane system for the production of phytotherapics from olive mill wastewaters. J. Membr. Sci. (2014). https://doi.org/10.1016/j.memsci.2013.12.021

    Article  Google Scholar 

  60. Hidayanto, E., Tanabe, T., Kawai, J.: Measurement of viscosity and sucrose concentration in aqueous solution using portable Brix meter. Berkala Fisika 13(2), 23–28 (2010)

    Google Scholar 

  61. Jorda, J., Marechal, P., Rigal, L., Pontalier, P.-Y.: Biopolymer purification by ultrafiltration. Desalination (2002). https://doi.org/10.1016/S0011-9164(02)00696-3

    Article  Google Scholar 

  62. Pritchard, M., Howell, J.A., Field, R.W.: The ultrafiltration of viscous fluids. J. Membr. Sci. (1995). https://doi.org/10.1016/0376-7388(94)00309-M

    Article  Google Scholar 

  63. Pichardo-Romero, D., Garcia-Arce, Z.P., Zavala-Ramírez, A., Castro-Muñoz, R.: Current advances in biofouling mitigation in membranes for water treatment: an overview. Processes (2020). https://doi.org/10.3390/pr8020182

    Article  Google Scholar 

  64. Castro-Muñoz, R., Díaz-Montes, E., Cassano, A., Gontarek, E.: Membrane separation processes for the extraction and purification of steviol glycosides: an overview. Crit. Rev. Food Sci. Nutr. (2020). https://doi.org/10.1080/10408398.2020.1772717

    Article  Google Scholar 

  65. Van der Bruggen, B.: Chemical modification of polyethersulfone nanofiltration membranes: a review. J. Appl. Polym. Sci. (2009). https://doi.org/10.1002/app.30578

    Article  Google Scholar 

  66. Maximous, N., Nakhla, G., Wan, W.: Comparative assessment of hydrophobic and hydrophilic membrane fouling in wastewater applications. J. Membr. Sci. (2009). https://doi.org/10.1016/j.memsci.2009.04.034

    Article  Google Scholar 

  67. Prodanov, M., Garrido, I., Vacas, V., Lebrón-Aguilar, R., Dueñas, M., Gómez-Cordovés, C., Bartolomé, B.: Ultrafiltration as alternative purification procedure for the characterization of low and high molecular-mass phenolics from almond skins. Anal. Chim. Acta (2008). https://doi.org/10.1016/j.aca.2007.12.040

    Article  Google Scholar 

  68. Yazdanshenas, M., Tabatabaeenezhad, A., Roostaazad, R., Khoshfetrat, A.: Full scale analysis of apple juice ultrafiltration and optimization of diafiltration. Sep. Purif. Technol. (2005). https://doi.org/10.1016/j.seppur.2005.06.004

    Article  Google Scholar 

  69. Conidi, C., Cassano, A., Caiazzo, F., Drioli, E.: Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. J. Food Eng. (2017). https://doi.org/10.1016/j.jfoodeng.2016.09.017

    Article  Google Scholar 

  70. Galanakis, C.M.: Separation of functional macromolecules and micromolecules: from ultrafiltration to the border of nanofiltration. Trends Food Sci. Technol. (2015). https://doi.org/10.1016/j.tifs.2014.11.005

    Article  Google Scholar 

  71. Wei, D.S., Hossain, M., Saleh, Z.S.: Separation of polyphenolics and sugar by ultrafiltration: effects of operating conditions on fouling and diafiltration. Int J Chem Biomol Engin 1(1), 14–23 (2008)

    Google Scholar 

  72. Gkoutsidis, P.E., Petrotos, K.B., Kokkora, M.I., Tziortziou, A.D., Christodouloulis, K., Goulas, P.: Olive mill waste water (OMWW) treatment by diafiltration. Desalination Water Treat. (2011). https://doi.org/10.5004/dwt.2011.2077

    Article  Google Scholar 

  73. Yan, J., Jia, X., Feng, L., Yadav, M., Li, X., Yin, L.: Rheological and emulsifying properties of arabinoxylans from various cereal brans. J. Cereal Sci. (2019). https://doi.org/10.1016/j.jcs.2019.102844

    Article  Google Scholar 

  74. Maes, C., Delcour, J.: Structural characterisation of water-extractable and water-unextractable arabinoxylans in wheat bran. J. Cereal Sci. (2002). https://doi.org/10.1006/jcrs.2001.0439

    Article  Google Scholar 

  75. Niño-Medina, G., Carvajal-Millán, E., Lizardi, J., Rascon-Chu, A., Marquez-Escalante, J.A., Gardea, A., Martinez-Lopez, A.L., Guerrero, V.: Maize processing waste water arabinoxylans: Gelling capability and cross-linking content. Food Chem. (2009). https://doi.org/10.1016/j.foodchem.2009.01.046

    Article  Google Scholar 

  76. Swennen, K., Courtin, C.M., Van der Bruggen, B., Vandecasteele, C., Delcour, J.A.: Ultrafiltration and ethanol precipitation for isolation of arabinoxylooligosaccharides with different structures. Carbohydr. Polym. (2005). https://doi.org/10.1016/j.carbpol.2005.08.001

    Article  Google Scholar 

  77. Díaz-Montes, E., Barragán-Huerta, B.E., Yáñez-Fernández, J.: Identification and evaluation of antioxidant activity of hydroxycinnamic acids extracted by ultrafiltration from three varieties of Mexican maize. Waste Biomass Valor. (2020). https://doi.org/10.1007/s12649-018-0420-9

    Article  Google Scholar 

  78. Bartels, C.R., Wilf, M., Andes, K., Iong, J.: Design considerations for wastewater treatment by reverse osmosis. Water Sci. Technol. (2005). https://doi.org/10.2166/wst.2005.0670

    Article  Google Scholar 

  79. Lee, S., Boo, C., Elimelech, M., Hong, S.: Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. (2010). https://doi.org/10.1016/j.memsci.2010.08.036

    Article  Google Scholar 

  80. Garcia-Castello, E.M., Mayor, L., Chorques, S., Argüelles, A., Vidal-Brotons, D., Gras, M.: Reverse osmosis concentration of press liquid from orange juice solid wastes: flux decline mechanisms. J. Food Eng. (2011). https://doi.org/10.1016/j.jfoodeng.2011.05.005

    Article  Google Scholar 

  81. Wang, F., Tarabara, V.V.: Pore blocking mechanisms during early stages of membrane fouling by colloids. J. Colloid Interface Sci. (2008). https://doi.org/10.1016/j.jcis.2008.09.028

    Article  Google Scholar 

  82. Rai, C., Rai, P., Majumdar, G., De, S., DasGupta, S.: Mechanism of permeate flux decline during microfiltration of watermelon (Citrullus lanatus) juice. Food Bioproc. Tech. (2010). https://doi.org/10.1007/s11947-008-0118-2

    Article  Google Scholar 

  83. Li, Q., Xu, Z., Pinnau, I.: Fouling of reverse osmosis membranes by biopolymers in wastewater secondary effluent: Role of membrane surface properties and initial permeate flux. J. Membr. Sci. (2007). https://doi.org/10.1016/j.memsci.2006.12.027

    Article  Google Scholar 

  84. Elimelech, M., Zhu, X., Childress, A.E., Hong, S.: Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 127(1), 101–109 (1997)

    Article  Google Scholar 

  85. Li, D., Wang, H.: Recent developments in reverse osmosis desalination membranes. J. Mater. Chem. (2010). https://doi.org/10.1039/B924553G

    Article  Google Scholar 

  86. Arsuaga, J.M., López-Muñoz, M., Sotto, A.: Correlation between retention and adsorption of phenolic compounds in nanofiltration membranes. Desalination (2010). https://doi.org/10.1016/j.desal.2008.11.051

    Article  Google Scholar 

  87. Hughes, Z.E., Gale, J.D.: Molecular dynamics simulations of the interactions of potential foulant molecules and a reverse osmosis membrane. J. Mater. Chem. (2012). https://doi.org/10.1039/C1JM13230J

    Article  Google Scholar 

  88. Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A., Hilal, N.: Reverse osmosis desalination: A state-of-the-art review. Desalination (2019). https://doi.org/10.1016/j.desal.2019.02.008

    Article  Google Scholar 

  89. Arvaniti, E., Zagklis, D., Papadakis, V., Paraskeva, C.: High-added value materials production from OMW: a technical and economical optimization. Int. J. Chem. Eng. (2012). https://doi.org/10.1155/2012/607219

    Article  Google Scholar 

Download references

Acknowledgements

V. Contreras-Jácquez is thankful for the Mexican Council of Science and Technology (CONACyT) scholarship awarded and the helpful assistance from Dr. Waldo M. Argüelles-Monal and MSc. Luisa L. Silva-Gutiérrez.

Funding

This work was financially supported by the Mexican Council of Science and Technology (CONACyT), Grant No. 2017–01-6267.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by VC-J and AA-T. The first draft of the manuscript was written by VC-J, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ali Asaff-Torres.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras-Jácquez, V., Valenzuela-Vázquez, U., Grajales-Hernández, D.A. et al. Pilot-Scale Integrated Membrane System for the Separation and Concentration of Compounds of Industrial Interest from Tortilla Industry Wastewater (Nejayote). Waste Biomass Valor 13, 345–360 (2022). https://doi.org/10.1007/s12649-021-01530-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01530-x

Keywords

Navigation