Skip to main content

Advertisement

Log in

Conversion of Glucose to 5-Hydroxymethylfurfural by Co-catalysis of p-Toluenesulfonic Acid (pTSA) and Chlorides: A Comparison Based on Kinetic Modeling

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Hydroxymethylfurfural (HMF) has been considered as one of the most promising biomass derived precursors for producing bio-based materials. Lewis acids are usually used to facilitate the isomerization of glucose to fructose in order to improve the HMF yield. In this study, glucose was converted to HMF with p-toluenesulfonic acid (pTSA) and chlorides as Brønsted and Lewis acids catalysts in the DMSO medium at 120 °C under atmospheric pressure. Kinetic modeling of the process was investigated with consideration of glucose isomerization, dehydration of fructose, rehydration of HMF and formation of humin. NH4Cl was screened as the most efficient co-catalyst for glucose conversion with HMF yield of 47%. The developed model could be well used to simulate the process with satisfying goodness of fit. The activation energies for glucose isomerization, condensation, dehydration of fructose, and rehydration of HMF were determined to be 39.8, 18.1, 55.2, and 19.0 kJ/mol, respectively. However, because the fructose concentration was very low and the reaction rate of fructose dehydration was much higher than that of glucose isomerization, a pseudo-steady state assumption could be employed, by which the observed activation energy for a lumped reaction of glucose to HMF conversion (EHMF) was determined as 45.6 kJ/mol. The developed observed kinetic model could be well used to describe the kinetics of pTSA and chloride co-catalyzed conversion of HMF. Isomerization of glucose to fructose, condensation of glucose to form humin, dehydration of fructose to form HMF, and rehydration of HMF to LA were the major reactions in the system. To improve the HMF selectivity, efforts should be made to reduce the rate of glucose condensation to form humin

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Van Putten, R.J., van der Waal, J.C., de Jong, E., Rasrendra, C.B., Heeres, H.J., de Vries, J.G.: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 113, 1499–1597 (2013). https://doi.org/10.1021/cr300182k

    Article  Google Scholar 

  2. Mimura, N., Sato, O., Shirai, M., Yamaguchi, A.: 5-Hydroxymethylfurfural production from glucose, fructose, cellulose, or cellulose-based waste material by using a calcium phosphate catalyst and water as a green solvent. ChemistrySelect 2, 1305–1310 (2017). https://doi.org/10.1002/slct.201601869

    Article  Google Scholar 

  3. Sajid, M., Zhao, X., Liu, D.: Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem. 20, 5427–5453 (2018). https://doi.org/10.1039/c8gc02680g

    Article  Google Scholar 

  4. Wang, L., Guo, H., Xie, Q., Wang, J., Hou, B., Jia, L., Cui, J., Li, D.: Conversion of fructose into furfural or 5-hydroxymethylfurfural over HY zeolites selectively in γ-butyrolactone. Appl. Catal. A Gen. 572, 51–60 (2019). https://doi.org/10.1016/J.APCATA.2018.12.023

    Article  Google Scholar 

  5. Xin, H., Zhang, T., Li, W., Su, M., Li, S., Shao, Q., Ma, L.: Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv. 7, 41546–41551 (2017). https://doi.org/10.1039/C7RA07684C

    Article  Google Scholar 

  6. Zhao, P., Zhang, Y., Wang, Y., Cui, H., Song, F., Sun, X., Zhang, L.: Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid–base bifunctional heteropolyacid-based ionic hybrids. Green Chem. 20, 1551–1559 (2018). https://doi.org/10.1039/C7GC03821F

    Article  Google Scholar 

  7. Tosi, I., Elliot, S.G., Jessen, B.M., Riisager, A., Taarning, E., Meier, S., Xin, H., Zhang, T., Li, W., Su, M., Li, S., Shao, Q., Ma, L.: Uncharted pathways for CrCl3 catalyzed glucose conversion in aqueous solution. RSC Adv. 7, 41526–41551 (2019). https://doi.org/10.1039/C7RA07684C

    Article  Google Scholar 

  8. Desir, P., Saha, B., Vlachos, D.G., Ghatta, A., AlWilton-Ely, J.D.E.T., Hallett, J.P.: Ultrafast flow chemistry for the acid-catalyzed conversion of fructose. Energy Environ. Sci. 12, 2463–2475 (2019). https://doi.org/10.1039/c9ee01189g

    Article  Google Scholar 

  9. Yang, L., Tsilomelekis, G., Caratzoulas, S., Vlachos, D.G.: Mechanism of Brønsted acid-catalyzed glucose dehydration. Chemsuschem 8, 1334–1341 (2015). https://doi.org/10.1002/cssc.201403264

    Article  Google Scholar 

  10. Qian, X.: Mechanisms and energetics for brønsted acid-catalyzed glucose condensation, dehydration and isomerization reactions. Top. Catal. 55, 218–226 (2012). https://doi.org/10.1007/s11244-012-9790-6

    Article  Google Scholar 

  11. Assary, R.S., Kim, T., Low, J.J., Greeley, J., Curtiss, L.A.: Glucose and fructose to platform chemicals: understanding the thermodynamic landscapes of acid-catalysed reactions using high-level ab initio methods. Phys. Chem. Chem. Phys. 14, 16603–16611 (2012). https://doi.org/10.1039/c2cp41842h

    Article  Google Scholar 

  12. Jadhav, H., Pedersen, C.M., Sølling, T., Bols, M.: 3-Deoxy-glucosone is an intermediate in the formation of furfurals from D-Glucose. Chemsuschem 4, 1049–1051 (2011). https://doi.org/10.1002/cssc.201100249

    Article  Google Scholar 

  13. Marianou, A.A., Michailof, C.M., Pineda, A., Iliopoulou, E.F., Triantafyllidis, K.S., Lappas, A.A.: Effect of Lewis and Brønsted acidity on glucose conversion to 5-HMF and lactic acid in aqueous and organic media. Appl. Catal. A 555, 75–87 (2018). https://doi.org/10.1016/J.APCATA.2018.01.029

    Article  Google Scholar 

  14. Zhang, X., Hewetson, B.B., Mosier, N.S.: Kinetics of maleic acid and aluminum chloride catalyzed dehydration and degradation of glucose. Energy Fuels 29, 2387–2393 (2015). https://doi.org/10.1021/ef502461s

    Article  Google Scholar 

  15. Qi, L., Mui, Y.F., Lo, S.W., Lui, M.Y., Akien, G.R., Horváth, I.T.: Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl)furfural and levulinic and formic acids in γ- valerolactone as a green solvent. ACS Catal. 4, 1470–1477 (2014). https://doi.org/10.1021/cs401160y

    Article  Google Scholar 

  16. Rathod, P.V., Mujmule, R.B., Chung, W.J., Jadhav, A.R., Kim, H.: Efficient dehydration of glucose, sucrose, and fructose to 5-hydroxymethylfurfural using tri-cationic ionic liquids. Catal. Lett. 149, 672–687 (2019). https://doi.org/10.1007/s10562-019-02667-0

    Article  Google Scholar 

  17. Wang, Y., Zhu, L., Zhang, Y., Cui, H., Yi, W., Song, F., Zhao, P., Sun, X., Xie, Y., Wang, L., Li, Z.: AlNb/SBA-15 catalysts with tunable Lewis and Bronsted acidic sites for glucose conversion to HMF. ChemistrySelect 3, 3555–3560 (2018). https://doi.org/10.1002/slct.201800081

    Article  Google Scholar 

  18. Wang, Y., Hu, Z., Fan, G., Yan, J., Song, G., Li, J.: Catalytic conversion of glucose to 5-(hydroxymethyl)furfural over phosphotungstic acid supported on SiO2-Coated Fe3O4. Waste Biomass Valor. 10, 2263–2271 (2019). https://doi.org/10.1007/s12649-018-0242-9

    Article  Google Scholar 

  19. Chen, D., Liang, F., Feng, D., Xian, M., Zhang, H., Liu, H., Du, F.: An efficient route from reproducible glucose to 5-hydroxymethylfurfural catalyzed by porous coordination polymer heterogeneous catalysts. Chem. Eng. J. 300, 177–184 (2016). https://doi.org/10.1016/J.CEJ.2016.04.039

    Article  Google Scholar 

  20. Zhang, M., Su, K., Song, H., Li, Z., Cheng, B.: The excellent performance of amorphous Cr2O3, SnO2, SrO and graphene oxide–ferric oxide in glucose conversion into 5-HMF. Catal. Commun. 69, 76–80 (2015). https://doi.org/10.1016/J.CATCOM.2015.05.024

    Article  Google Scholar 

  21. Ramli, N.A.S., Amin, N.A.S.: Thermo-kinetic assessment of glucose decomposition to 5-hydroxymethyl furfural and levulinic acid over acidic functionalized ionic liquid. Chem. Eng. J. 335, 221–230 (2018). https://doi.org/10.1016/J.CEJ.2017.10.112

    Article  Google Scholar 

  22. Ramli, N.A.S., Amin, N.A.S.: Kinetic study of glucose conversion to levulinic acid over Fe/HY zeolite catalyst. Chem. Eng. J. 283, 150–159 (2016). https://doi.org/10.1016/J.CEJ.2015.07.044

    Article  Google Scholar 

  23. Pagán-Torres, Y.J., Wang, T., Gallo, J.M.R., Shanks, B.H., Dumesic, J.A.: Production of 5-hydroxymethylfurfural from glucose using a combination of lewis and brønsted acid catalysts in water in a biphasic reactor with an alkylphenol solvent. ACS Catal. 2, 930–934 (2012). https://doi.org/10.1021/cs300192z

    Article  Google Scholar 

  24. Wei, W., Wu, S.: Experimental and kinetic study of glucose conversion to levulinic acid in aqueous medium over Cr/HZSM-5 catalyst. Fuel 225, 311–321 (2018). https://doi.org/10.1016/J.FUEL.2018.03.120

    Article  Google Scholar 

  25. Zhou, C., Zhao, J., Yagoub, A.E.A., Ma, H., Yu, X., Hu, J., Bao, X., Liu, S., Elgasim, A., Yagoub, A.E.A., Ma, H., Yu, X., Hu, J., Bao, X., Liu, S.: Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: reaction kinetics and mechanism, Egypt. J. Pet. 26, 477–487 (2017). https://doi.org/10.1016/j.ejpe.2016.07.005

    Article  Google Scholar 

  26. Weiqi, W., Shubin, W.: Experimental and kinetic study of glucose conversion to levulinic acid catalyzed by synergy of Lewis and Brønsted acids. Chem. Eng. J. 307, 389–398 (2017). https://doi.org/10.1016/j.cej.2016.08.099

    Article  Google Scholar 

  27. Tang, J., Zhu, L., Fu, X., Dai, J., Guo, X., Hu, C.: Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl-H2O/THF biphasic system. ACS Catal. 7, 256–266 (2017). https://doi.org/10.1021/acscatal.6b02515

    Article  Google Scholar 

  28. Wang, L., Zhang, J., Wang, X., Zhang, B., Ji, W., Meng, X., Li, J., Su, D.S., Bao, X., Xiao, F.S.: Creation of Brønsted acid sites on Sn-based solid catalysts for the conversion of biomass. J. Mater. Chem. A. 2, 3725–3729 (2014). https://doi.org/10.1039/c3ta14982j

    Article  Google Scholar 

  29. Steinbach, D., Kruse, A., Sauer, J., Vetter, P.: Sucrose is a promising feedstock for the synthesis of the platform chemical hydroxymethylfurfural. Energies 11, 645 (2018). https://doi.org/10.3390/en11030645

    Article  Google Scholar 

  30. Asghari, F.S.A., Yoshida, H.: Acid-catalyzed production of 5-hydroxymethyl furfural from D-fructose in subcritical water. Ind. Eng. Chem. Res. 45, 2163–2173 (2006). https://doi.org/10.1021/ie051088y

    Article  Google Scholar 

  31. Gajula, S., Inthumathi, K., Arumugam, S.R., Srinivasan, K.: Strategic designing on selection of solvent systems for conversion of biomass sugars to furan derivatives and their separation. ACS Sustain. Chem. Eng. 5, 5373–5381 (2017). https://doi.org/10.1021/acssuschemeng.7b00681

    Article  Google Scholar 

  32. Mellmer, M.A., Sanpitakseree, C., Demir, B., Bai, P., Ma, K., Neurock, M., Dumesic, J.A.: Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018). https://doi.org/10.1038/s41929-018-0027-3

    Article  Google Scholar 

  33. Dalessandro, E.V., Pliego, J.R.: Fast screening of solvents for simultaneous extraction of furfural, 5-hydroxymethylfurfural and levulinic acid from aqueous solution using SMD solvation free energies. J. Braz. Chem. Soc. 29, 430–434 (2018). https://doi.org/10.21577/0103-5053.20170140

    Article  Google Scholar 

  34. Caratzoulas, S., Davis, M.E., Gorte, R.J., Gounder, R., Lobo, R.F., Nikolakis, V., Sandler, S.I., Snyder, M.A., Tsapatsis, M., Vlachos, D.G.: Challenges of and insights into acid-catalyzed transformations of sugars. J. Phys. Chem. C. 118, 22815–22833 (2014). https://doi.org/10.1021/jp504358d

    Article  Google Scholar 

  35. Taarning, E., Sádaba, I., Jensen, P.R., Meier, S.: Discovery and exploration of the efficient acyclic dehydration of hexoses in DMSO/water. Chemsuschem 12, 5086–5091 (2019). https://doi.org/10.1002/cssc.201902322

    Article  Google Scholar 

  36. Enomoto, K., Hosoya, T., Miyafuji, H.: High-yield production of 5-hydroxymethylfurfural from d-fructose, d-glucose, and cellulose by its in situ removal from the reaction system. Cellulose 25, 2249–2257 (2018). https://doi.org/10.1007/s10570-018-1717-3

    Article  Google Scholar 

  37. Tang, Z., Su, J.: One step conversion of glucose into 5-hydroxymethylfurfural (HMF) via a basic catalyst in mixed solvent systems of ionic liquid-dimethyl sulfoxide. J. Oleo Sci. 68, 261–271 (2019). https://doi.org/10.5650/jos.ess18196

    Article  Google Scholar 

  38. Zhang, X., Murria, P., Jiang, Y., Xiao, W., Kenttämaa, H.I., Abu-Omar, M.M., Mosier, N.S.: Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media. Green Chem. 18, 5219–5229 (2016). https://doi.org/10.1039/c6gc01395c

    Article  Google Scholar 

  39. Weingarten, R., Cho, J., Xing, R., Conner, W.C., Huber, G.W.: Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions. Chemsuschem 5, 1280–1290 (2012). https://doi.org/10.1002/cssc.201100717

    Article  Google Scholar 

  40. Pilath, H.M., Nimlos, M.R., Mittal, A., Himmel, M.E., Johnson, D.K.: Glucose reversion reaction kinetics. J. Agric. Food Chem. 58, 6131–6140 (2010). https://doi.org/10.1021/jf903598w

    Article  Google Scholar 

  41. Jing, Q., Lü, X.: Kinetics of non-catalyzed decomposition of glucose in high-temperature liquid water. Chin. J. Chem. Eng. 16, 890–894 (2008). https://doi.org/10.1016/S1004-9541(09)60012-4

    Article  Google Scholar 

  42. Atanda, L., Konarova, M., Ma, Q., Mukundan, S., Shrotri, A., Beltramini, J.: High yield conversion of cellulosic biomass into 5-hydroxymethylfurfural and a study of the reaction kinetics of cellulose to HMF conversion in a biphasic system. Catal. Sci. Technol. 6, 6257–6266 (2016)

    Article  Google Scholar 

  43. Chang, C., Ma, X., Cen, P.: Kinetics of levulinic acid formation from glucose decomposition at high temperature. Chin. J. Chem. Eng. 14, 708–712 (2006). https://doi.org/10.1016/S1004-9541(06)60139-0

    Article  Google Scholar 

  44. Kupiainen, L., Ahola, J., Tanskanen, J.: Kinetics of glucose decomposition in formic acid. Chem. Eng. Res. Des. 89, 2706–2713 (2011). https://doi.org/10.1016/j.cherd.2011.06.005

    Article  Google Scholar 

  45. Gaylord Chemical Company, L.: Dimethyl Sulfoxide (DMSO) Solubility Data. Bull. No. 102B. 1–20 (2007)

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21878176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebing Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajid, M., Bai, Y., Liu, D. et al. Conversion of Glucose to 5-Hydroxymethylfurfural by Co-catalysis of p-Toluenesulfonic Acid (pTSA) and Chlorides: A Comparison Based on Kinetic Modeling. Waste Biomass Valor 12, 3271–3286 (2021). https://doi.org/10.1007/s12649-020-01215-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01215-x

Keywords

Navigation