Skip to main content

Advertisement

Log in

Minimal Enzymes Cocktail Development by Filamentous Fungi Consortia in Solid-State Cultivation and Valorization of Pineapple Crown Waste by Enzymatic Saccharification

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Agroindustrial wastes is an interesting opportunity for enzymes production, reducing operational costs and strengthening the biorefineries concept. The conversion of lignocellulosic waste to fermentable sugars is current challenge for biorefineries industries. Enzyme cocktail used in delignification and saccharification platform are produced by a combinatory of several lignocellulolytic enzymes. The aim of this study was to develop filamentous fungi compatible-consortia isolated from pineapple wastes for cellulose-degrading enzymes production using pineapple crown waste in solid-state cultivation and its potential for saccharification of pineapple crown waste. Isolates were screened in agar-plate and in solid-state cultivation for cellulases, xylanase and pectinases productions. Six compatible consortia of Trichoderma strains with Aspergillus niger or Pleurotus ostreatus were evaluated for SSC using pineapple crown. All consortia increased the enzymes production compared to monoculture. Consortia of Trichoderma asperellum PEC-6 and P. ostreatus increased 1.60-fold the xylanase and 1.42-fold the β-glucosidase productions. T. asperellum PEC-17 and A. niger increased 1.16-fold endoglucanase and 1.28-fold pectinase. Saccharification of pineapple crown waste using enzyme cocktail produced by filamentous fungi consortia increased the total reducing sugar released in 12.50–13.93% compared to enzymes produced by monocultures. This study provides an alternative model to the cocktail enzyme production by mixed cultures development with lower cost of on-site enzyme manufacture by use of agroindustrial wastes eliminating an enzyme blended step. Moreover, the procedure used in this work can be potentially cost saving and environmentally friendly and should be explored on other bioenergy feedstocks and feed production.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Sthal and Christensen et al.

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zainuddin, M.F., Shamsudin, R., Mokhtar, M.N., Ismail, D.: Physicochemical properties of pineapple plant waste fibers from the leaves and stems of different varieties. BioResources 9, 5311–5324 (2014)

    Google Scholar 

  2. Roda, A., Lambri, M.: Food uses of pineapple waste and by-products: a review. Int. J. Food Sci. Technol. 54, 1009–1017 (2019)

    Google Scholar 

  3. Sadh, P.K., Duhan, S., Duahn, J.S.: Agro-industrial wastes and their utilization using solid state fermentation: a review. Bioresour. Bioprocess (2018). https://doi.org/10.1186/s40643-017-0187-z

    Article  Google Scholar 

  4. Daud, Z., Hatta, M.Z.M., Kassim, A.S.M., Aripin, A.M.: Analysis of the chemical compositions and fiber morphology of pineapple (Anans comosus) leaves in Malaysia. J. Appl. Sci. 14, 1355–1358 (2014)

    Google Scholar 

  5. Asim, M., Abdan, K., Jawaid, M., Nasir, M., Dashtizadeh, Z., Ishak, M.R., Hoque, M.E.: A review on pineapple leaves fibre and its composites. Int. J. Polym. Sci. 2015, 1 (2015)

    Google Scholar 

  6. Banerjee, S., Ranganathan, V., Patti, A., Arora, A.: Valorisation of pineapple wastes for food and therapeutic applications. Trends Food Sci. Technol. 80, 60–70 (2018)

    Google Scholar 

  7. Hansen, G.H., Lübeck, M., Frisvada, J.C., Lübeck, P.S., Andersen, B.: Production of cellulolytic enzymes from ascomycetes: comparison of solid state and submerged fermentation. Process Biochem. 50, 1327–1341 (2015)

    Google Scholar 

  8. Druzhinina, I.S., Chenthamara, K., Zhang, J., Atanasova, L., Yang, D., Miao, Y., et al.: Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet. 14, e1007322 (2018)

    Google Scholar 

  9. Zhao, C., Deng, L., Fang, H.: Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability. Biomass Bioenergy 112, 93–98 (2018)

    Google Scholar 

  10. Goswami, D., Thakker, J.N., Dhandhukia, P.C.: Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric. (2016). https://doi.org/10.1080/23311932.2015.1127500

    Article  Google Scholar 

  11. Poulsen, H.V., Wolfgang, F.W., Ingvorsen, K.: Aerobic and anaerobic cellulase production by Cellulomonas uda. Arch. Microbiol. 198, 725–735 (2016)

    Google Scholar 

  12. Cardoso, W.S., Queiroz, P.V., Tavares, G.P., Santos, F.A., Soares, F.E.F., Kasuya, M.C.M., Queiroz, J.H.: Multi-enzyme complex of white rot fungi in saccharification of lignocellulosic material. Braz. J. Microbiol. 49, 879–884 (2018)

    Google Scholar 

  13. Farinas, C.S.: Developments in solid-state fermentation for the production of biomass degrading enzymes for the bioenergy sector. Renew. Sustain. Energy Rev. 52, 179–188 (2015)

    Google Scholar 

  14. Abdel-Rahman, M.A., El-Din, M.N., Refaat, B.M., Abdel-Shakour, E.H., Ewais, E.E.-D., Alrefaey, H.M.A.: Biotechnological application of thermotolerant cellulose-decomposing bacteria in composting of rice straw. Ann. Agric. Sci. 61, 135–143 (2016)

    Google Scholar 

  15. Liu, J., Shi, P., Ahmad, S., Yin, C., Liu, X., Liu, Y., Zhang, H., Xu, Q., Yan, H., Li, Q.: Co-culture of Bacillus coagulans and Candida utilis efficiently treats Lactobacillus fermentation wastewater. AMB Express 9, 15 (2019)

    Google Scholar 

  16. Unban, K., Khatthongngam, N., Shetty, K., Khanongnuch, C.: Nutritional biotransformation in traditional fermented tea (Miang) from north Thailand and its impact on antioxidant and antimicrobial activities. Food Sci. Technol. 56, 2687–2699 (2019)

    Google Scholar 

  17. Fang, H., Zhao, C., Song, X.Y., Chen, M., Chang, Z., Chu, J.: Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants. Biotechnol. Bioprocess. Eng. 18, 390–398 (2013)

    Google Scholar 

  18. Kolasa, M., Ahring, B.K., Lübeck, P.S., Lübeck, M.: Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 169, 143–148 (2014)

    Google Scholar 

  19. Vogel, H.J.: A convenient growth medium for Neurospora crassa (medium N). Microbiol. Genet Bull. 13, 42–43 (1956)

    Google Scholar 

  20. Castellani, A.: Maintenace and cultivation of the common pathogenic fungi of man in sterile distilled water. J. Trop. Med. Hyg. 70, 181–184 (1967)

    Google Scholar 

  21. Raper, K.B.: Fennel, D.I.: The genus Aspergillus. Robert & Krieger, Florida, (1977)

  22. Pitt, J.I.: A Laboratory Guide to Common Penicillium Species. Commonwealth scientific and industrial research organization. Div. Food Proces, North Wales (1988)

    Google Scholar 

  23. Rifai, M.A.: A revision of the genus Trichoderma. Mycology 116, 1–56 (1969)

    Google Scholar 

  24. Raeder, U., Broda, P.: Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1, 17–20 (1985)

    Google Scholar 

  25. Kumar, S., Stecher, G., Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016)

    Google Scholar 

  26. Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H.N. (ed.) Mammalian Protein Metabolism. Academic Press, New York (1969)

    Google Scholar 

  27. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

    Google Scholar 

  28. Felsenstein, J.: Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Google Scholar 

  29. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Google Scholar 

  30. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Google Scholar 

  31. Molla, A.H., Fakhru’l-Razi, A., Abd-Aziz, S., Hanafi, M.M., Alam, M.Z.: In vitro compatibility evaluation of fungal mixed culture for bioconversion of domestic wastewater sludge. World J. Microbiol. Biotechnol. 17, 849–856 (2001)

    Google Scholar 

  32. Alam, M.D.Z., Fakhru’l-Razi, A., Abd-Aziz, S., Molla, A.H.: Optimization of compatible mixed cultures for liquid state bioconversion of municipal wastewater sludge. Water Air Soil Pollut. 149, 113–126 (2003)

    Google Scholar 

  33. Skidmore, A.M., Dickinson, C.M.: Colony interactions and hyphal interference between Sepatoria nodorum and phylloplane fungi. Trans. Br. Mycol. Soc. 66, 57–64 (1976)

    Google Scholar 

  34. Stahl, P.D., Christensen, M.: In vitro mycelial interactions among members of a soil microfungal community. Soil Biol. Biochem. 24, 309–316 (1992)

    Google Scholar 

  35. Latif, F., Rajoka, M.I., Malik, K.A.: Saccharification of Leptochloa fusca (kallar grass straw) using thermostable cellulases. Bioresour. Technol. 50, 107–111 (1994)

    Google Scholar 

  36. Passos, D.F., Pereira Jr., N., Castro, A.M.: A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr. Opin. Green Sustain. Chem. 14, 01860–01866 (2018)

    Google Scholar 

  37. Ten, L.N., Im, W.T., Kim, M.K., Kang, M.S., Lee, S.T.: Development of a plate technique for screening of polysaccharide degrading microorganisms by using a mixture of insoluble chromogenic substrates. J. Microbiol. Methods 56, 375–382 (2004)

    Google Scholar 

  38. Shelley, A.W., Deeth, H.C., MacRae, I.C.: Review of methods of enumeration, detection and isolation of lipolytic microorganisms with special reference to dairy applications. J. Microbiol. Methods 6, 123–137 (1987)

    Google Scholar 

  39. Teather, R.M., Wood, P.J.: Use of Congo Red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl. Environ. Microbiol. 43, 777–780 (1982)

    Google Scholar 

  40. Ruegger, M.J.S., Tauk-Tornisielo, S.M.: Atividade da celulase de fungos isolados do solo da Estação Ecológica de Juréia-Itatins, São Paulo. Brasil. Rev. Bras. Bot. 27, 205–211 (2004)

    Google Scholar 

  41. Babu, C.R., Ketanapalli, H., Beebi, S.K., Kolluru, V.C.: Wheat bran-composition and nutritional quality: a review. Adv. Biotechnol. Microbiol. 9, 555754 (2018)

    Google Scholar 

  42. Valencia, E.Y., Chambergo, F.S.: Mini-review: Brazilian fungi diversity for biomass degradation. Fungal Gen. Biol. 60, 9–18 (2013)

    Google Scholar 

  43. Delabona, P.S., Pirota, R.D.P.B., Codima, C.A., Tremacoldi, C.R., Rodrigues, A., Farinas, C.S.: Using amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy 37, 243–250 (2012)

    Google Scholar 

  44. Florencio, C., Couri, S., Farinas, C.S.: Correlation between agar plate screening and solid-state fermentation for the prediction of cellulase production by Trichoderma strains. Enzyme Res. 2012, 7 (2012)

    Google Scholar 

  45. Taher, I.B., Bennour, H., Fickers, P., Hassouna, M.: Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste Biomass Valor. 8, 183–192 (2017)

    Google Scholar 

  46. Troiano, D., Orsat, V., Dumont, M.J.: Status of filamentous fungi in integrated biorefineries. Renew. Sustain. Energy Rev. 117, 109742 (2020)

    Google Scholar 

  47. Marx, I.J., Wyk, N., Smit, S., Jacobson, D., Viljoen-Bloom, M., Volschenk, H.: Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol. Biofuels 6, 172 (2013)

    Google Scholar 

  48. Wu, Q., Sun, R., Ni, M., Yu, J., Li, Y., Yu, C., et al.: Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE 12, e0179957 (2017)

    Google Scholar 

  49. Inoue, H., Kitao, C., Yano, S., Sawayama, S.: Production of b-xylosidase from Trichoderma asperellum KIF125 and its application in efficient hydrolysis of pretreated rice straw with fungal cellulase. World J. Microbiol. Biotechnol. 32, 186 (2016)

    Google Scholar 

  50. Abdel-Ghany, T.M., Ganash, M., Bakri, M.M., Al-Rajhi, A.M.H.: Molecular characterization of Trichoderma asperellum and lignocellulolytic activity on barley straw treated with silver nanoparticles. BioResources 13, 1729–1744 (2018)

    Google Scholar 

  51. Victoria, J., Odaneth, A., Lali, A.: Importance of cellulase cocktails favouring hydrolysis of cellulose. Prep. Biochem. Biotechnol. 47, 547–553 (2017)

    Google Scholar 

  52. Ma, K., Ruan, Z.: Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour. Technol. 175, 586–593 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Pró-Reitoria de Pesquisa e Pós-Graduação (PROPESQ/UFT) for the financial support (Edital PROPESQ/PROEX no 24/2013), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, Laboratory of Microorganism Biochemical-UNESP, Rio Claro, São Paulo, Brazil and Dra. Sâmia Maria Tauk-Tornisielo, CEA-UNESP, Rio Claro, São Paulo, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Fernando de Almeida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, W.F.A., Batista, R.D., do Amaral Santos, C.C.A. et al. Minimal Enzymes Cocktail Development by Filamentous Fungi Consortia in Solid-State Cultivation and Valorization of Pineapple Crown Waste by Enzymatic Saccharification. Waste Biomass Valor 12, 2521–2539 (2021). https://doi.org/10.1007/s12649-020-01199-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01199-8

Keywords

Navigation