Skip to main content
Log in

Bioactivity Screening of Hydrolysates From Brown Crab Processing Side Streams Fermented by Marine Pseudoalteromonas Strains

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This study aims to employ five marine Pseudoalteromonas strains, belonging to Psa. arctica DSM 18437T, Psa. carrageenovora DSM 6820T, Psa. issachenkonii LMG 19697T, Psa. rubra DSM 6842T and Psa. tunicata DSM 14096T to ferment brown crab processing side streams.

Methods

The generated hydrolysates after the fermentation were screened for their antioxidant, anthelmintic and anti-biofilm activities.

Results

After 72 h, the highest degree of hydrolysis (DoH) of 14.92% was reached by Psa. issachenkonii. The highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability was obtained by hydrolysates of Psa. rubra with an IC50 of 2.23 mg/mL while for the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging ability, the maximum was reached by the hydrolysates of Psa. tunicata with an IC50 of 1.23 mg/mL. Anthelmintic activity, as tested on Caenorhabditis elegans, revealed a 99% mortality rate at 1 mg/mL with ethyl acetate extracts of the hydrolysates of Psa. arctica, Psa. issachenkonii and Psa. rubra. In terms of antibiofilm activity, aqueous extracts of the hydrolysates of Psa. arctica and Psa. issachenkonii at 500 µg/mL could dramatically decrease the biofilm formation index of Staphylococcus epidermidis RP62A from 1.35 to 0.37 and 0.36, respectively.

Conclusions

Brown crab processing side streams could be valorized by marine Pseudoalteromonas bacteria fermentation for the production of a mixture of bioactive compounds.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barrento, S., Marques, A., Teixeira, B., Mendes, R., Bandarra, N., Vaz-Pires, P., Nunes, M.L.: Chemical composition, cholesterol, fatty acid and amino acid in two populations of brown crab Cancer pagurus ecological and human health implications. J. Food Compos. Anal. 23, 716–725 (2010). https://doi.org/10.1016/j.jfca.2010.03.019

    Article  Google Scholar 

  2. Ervik, H., Lierhagen, S., Asimakopoulos, A.G.: Elemental content of brown crab (Cancer pagurus)—is it safe for human consumption? A recent case study from Mausund, Norway. Sci. Total Environ. 716, 135175 (2019)

    Article  Google Scholar 

  3. Hamed, I., Ozogul, F., Regenstein, J.M.: Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci. Technol. 48, 40–50 (2016). https://doi.org/10.1016/j.tifs.2015.11.007

    Article  Google Scholar 

  4. Healy, M.G., Romo, C.R., Bustos, R.: Bioconversion of marine crustacean shell waste. Resour. Conserv. Recy. 11, 139–147 (1994). https://doi.org/10.1016/0921-3449(94)90085-X

    Article  Google Scholar 

  5. Yen, M.T., Yang, J.H., Mau, J.L.: Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr. Polym. 75, 15–21 (2009). https://doi.org/10.1016/j.carbpol.2008.06.006

    Article  Google Scholar 

  6. Abdou, E.S., Nagy, K.S., Elsabee, M.Z.: Extraction and characterization of chitin and chitosan from local sources. Bioresour. technol. 99, 1359–1367 (2008). https://doi.org/10.1016/j.biortech.2007.01.051

    Article  Google Scholar 

  7. Shahidi, F., Synowiecki, J.: Isolation and characterization of nutrients and value-added products from snow crab (Chionoecetes opilio) and shrimp (Pandalus borealis) processing discards. J. Agric. Food Chem. 39, 1527–1532 (1991)

    Article  Google Scholar 

  8. Shirai, K., Guerrero, I., Huerta, S., Saucedo, G., Castillo, A., Gonzalez, O., Hall, G.M.: Effect of initial glucose concentration and inoculation level of lactic acid bacteria in shrimp waste ensilation. Enzyme Microb. Technol. 28, 446–452 (2001). https://doi.org/10.1016/s0141-0229(00)00338-0

    Article  Google Scholar 

  9. Beaulieu, L., Thibodeau, J., Bryl, P., Carbonneau, M.E.: Characterization of enzymatic hydrolyzed snow crab (Chionoecetes opilio) by-product fractions: a source of high-valued biomolecules. Bioresour. technol. 100, 3332–3342 (2009). https://doi.org/10.1016/j.biortech.2009.01.073

    Article  Google Scholar 

  10. Chen, Y.C., Chiang, T.J., Liang, T.W., Wang, I.L., Wang, S.L.: Reclamation of squid pen by Bacillus licheniformis TKU004 for the production of thermally stable and antimicrobial biosurfactant. Biocatal. Agric. Biotechnol. 1, 62–69 (2012)

    Article  Google Scholar 

  11. Wang, S.L., Liu, K.C., Liang, T.W., Kuo, Y.H., Wang, C.Y.: In vitro antioxidant activity of liquor and semi-purified fractions from fermented squid pen biowaste by Serratia ureilytica TKU013. Food Chem. 119, 1380–1385 (2010). https://doi.org/10.1016/j.foodchem.2009.09.017

    Article  Google Scholar 

  12. Wang, S.L., Yen, Y.H., Tsiao, W.J., Chang, W.T., Wang, C.L.: Production of antimicrobial compounds by Monascus purpureus CCRC31499 using shrimp and crab shell powder as a carbon source. Enzyme Microb. Technol. 31, 337–344 (2002). https://doi.org/10.1016/S0141-0229(02)00135-7

    Article  Google Scholar 

  13. ISO: Determination of nitrogen content, ISO 937:1978 standard. In: International Standards Meat and Meat Products. International Organization for Standadization, Genève (1978)

    Google Scholar 

  14. ISO: Determination of moisture content, ISO 937:1997 standard. In: International Standards Meat and Meat Products. International Organization for Standadization, Genève (1997)

    Google Scholar 

  15. ISO: Determination of crude ash content, ISO 5984:2002 standard. In: Animal feeding stuffs. International Organization for Standadization, Genève (2002)

    Google Scholar 

  16. ISO: Determination of total fat content, ISO 1443:1973 standard. In: International Standards Meat and Meat Products. International Organization for Standadization, Genève (1973)

    Google Scholar 

  17. Adler-Nissen, J.: Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J. Agric. Food Chem. 27, 1256–1262 (1979). https://doi.org/10.1021/jf60226a042

    Article  Google Scholar 

  18. Sharma, O.P., Bhat, T.K.: DPPH antioxidant assay revisited. Food Chem. 113, 1202–1205 (2009). https://doi.org/10.1016/j.foodchem.2008.08.008

    Article  Google Scholar 

  19. Arnao, M.B., Cano, A., Acosta, M.: The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73, 239–244 (2001). https://doi.org/10.1016/S0308-8146(00)00324-1

    Article  Google Scholar 

  20. Sandasi, M., Leonard, C.M., Viljoen, A.M.: The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol. 50, 30–35 (2010). https://doi.org/10.1111/j.1472-765X.2009.02747.x

    Article  Google Scholar 

  21. Niu, C., Gilbert, E.S.: Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure. Appl. Environ. Microbiol. 70, 6951–6956 (2004). https://doi.org/10.1128/Aem.70.12.6951-6956.2004

    Article  Google Scholar 

  22. Brenner, S.: The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974)

    Article  Google Scholar 

  23. Stiernagle, T.: Maintenance of C. elegans. In: Hobert, O. (Ed.) WormBook: The Online Review of C. elegans Biology. The C. elegans research community: (2006)

  24. Beaulieu, L., Thibodeau, J., Bonnet, C., Bryl, P., Carbonneau, M.: Detection of antibacterial activity in an enzymatic hydrolysate fraction obtained from processing of Atlantic rock crab (Cancer irroratus) by-products. PharmaNutrition. 1, 149–157 (2013)

    Article  Google Scholar 

  25. Rebeca, B.D., Penavera, M.T., Diazcastaneda, M.: Production of fish-protein hydrolysates with bacterial proteases—yield and nutritional-value. J Food Sci. 56, 309–314 (1991). https://doi.org/10.1111/j.1365-2621.1991.tb05268.x

    Article  Google Scholar 

  26. Fling, S.P., Gregerson, D.S.: Peptide and protein molecular-weight determination by electrophoresis using a high-molarity tris buffer system without urea. Anal. Biochem. 155, 83–88 (1986). https://doi.org/10.1016/0003-2697(86)90228-9

    Article  Google Scholar 

  27. Manni, L., Ghorbel-Bellaaj, O., Jellouli, K., Younes, I., Nasri, M.: Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl. Biochem. Biotechnol. 162, 345–357 (2010). https://doi.org/10.1007/s12010-009-8846-y

    Article  Google Scholar 

  28. Sila, A., Sayari, N., Balti, R., Martinez-Alvarez, O., Nedjar-Arroume, N., Moncef, N., Bougatef, A.: Biochemical and antioxidant properties of peptidic fraction of carotenoproteins generated from shrimp by-products by enzymatic hydrolysis. Food Chem. 148, 445–452 (2014). https://doi.org/10.1016/j.foodchem.2013.05.146

    Article  Google Scholar 

  29. Jiang, W., Hu, S.W., Li, S.J., Liu, Y.: Biochemical and antioxidant properties of peptidic fraction generated from crab (Portunus trituberculatus) shells by enzymatic hydrolysis. Int. J. Food Sci. Tech. 52, 2479–2488 (2017). https://doi.org/10.1111/ijfs.13533

    Article  Google Scholar 

  30. Sachindra, N.M., Bhaskar, N.: In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresour. technol. 99, 9013–9016 (2008). https://doi.org/10.1016/j.biortech.2008.04.036

    Article  Google Scholar 

  31. Feher, D., Barlow, R.S., Lorenzo, P.S., Hemscheidt, T.K.: A 2-substituted prodiginine, 2-(p-Hydroxybenzyl)prodigiosin, from Pseudoalteromonas rubra. J. Nat. Prod. 71, 1970–1972 (2008). https://doi.org/10.1021/np800493p

    Article  Google Scholar 

  32. Vitale, G.A., Sciarretta, M., Palma Esposito, F., January, G.G., Giaccio, M., Bunk, B., et al.: Genomics–metabolomics profiling disclosed marine vibrio spartinae 3.6 as a producer of a new branched side chain prodigiosin. J. Nat. Prod. 83, 1495–1504 (2020)

    Article  Google Scholar 

  33. Juang, R.S., Yeh, C.L.: Adsorptive recovery and purification of prodigiosin from methanol/water solutions of Serratia marcescens fermentation broth. Biotechnol. Bioproc. E. 19, 159–168 (2014). https://doi.org/10.1007/s12257-013-0547-2

    Article  Google Scholar 

  34. Arivizhivendhan, K.V., Mahesh, M., Boopathy, R., Swarnalatha, S., Mary, R.R., Sekaran, G.: Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J. Food Sci. Technol. 55, 2661–2670 (2018). https://doi.org/10.1007/s13197-018-3188-9

    Article  Google Scholar 

  35. Flemming, H.C., Wingender, J.: The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010). https://doi.org/10.1038/nrmicro2415

    Article  Google Scholar 

  36. Aslam, S.: Effect of antibacterials on biofilms. Am. J. Infect. Control 36, e9–e11 (2008). https://doi.org/10.1016/j.ajic.2008.10.002

    Article  Google Scholar 

  37. Donlan, R.M.: Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17, 66–72 (2009). https://doi.org/10.1016/j.tim.2008.11.002

    Article  Google Scholar 

  38. Van Houdt, R., Michiels, C.W.: Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109, 1117–1131 (2010). https://doi.org/10.1111/j.1365-2672.2010.04756.x

    Article  Google Scholar 

  39. Estrela, A.B., Heck, M.G., Abraham, W.R.: Novel approaches to control biofilm infections. Curr. Med. Chem. 16, 1512–1530 (2009). https://doi.org/10.2174/092986709787909640

    Article  Google Scholar 

  40. Naves, P., Del Prado, G., Huelves, L., Gracia, M., Ruiz, V., Blanco, J., Rodríguez-Cerrato, V., Ponte, M., Soriano, F.: Measurement of biofilm formation by clinical isolates of Escherichia coli is method‐dependent. J. Appl. Microbiol. 105, 585–590 (2008)

    Article  Google Scholar 

  41. Dheilly, A., Soum-Soutera, E., Klein, G.L., Bazire, A., Compere, C., Haras, D., Dufour, A.: Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl. Environ. Microbiol. 76, 3452–3461 (2010). https://doi.org/10.1128/AEM.02632-09

    Article  Google Scholar 

  42. Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M.L., Artini, M., Selan, L.: Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res. Microbiol. 164, 450–456 (2013). https://doi.org/10.1016/j.resmic.2013.01.010

    Article  Google Scholar 

  43. Silipo, A., Leone, S., Lanzetta, R., Parrilli, M., Sturiale, L., Garozzo, D., et al.: The complete structure of the lipooligosaccharide from the halophilic bacterium Pseudoalteromonas issachenkonii KMM 3549T. Carbohydr. Res. 339, 1985–1993 (2004). https://doi.org/10.1016/j.carres.2004.05.008

    Article  Google Scholar 

  44. Bandara, H.M., Lam, O.L., Watt, R.M., Jin, L.J., Samaranayake, L.P.: Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J. Med. Microbiol. 59, 1225–1234 (2010). https://doi.org/10.1099/jmm.0.021832-0

    Article  Google Scholar 

  45. Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P., Ghigo, J.M.: Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc. Natl. Acad. Sci. U. S. A. 103, 12558–12563 (2006). https://doi.org/10.1073/pnas.0605399103

    Article  Google Scholar 

  46. Holden-Dye, L., Walker, R.J.: Anthelmintic drugs. In: WormBook: The Online Review of C. elegans Biology. 1–13 (2007). https://doi.org/10.1895/wormbook.1.143.1

  47. Holden-Dye, L., Walker, R.: Anthelmintic drugs and nematocides: studies in Caenorhabditis elegans. In: WormBook: The Online Review of C. elegans Biology. 1–29 (2014). https://doi.org/10.1895/wormbook.1.143.2

  48. Lustigman, S., Prichard, R.K., Gazzinelli, A., Grant, W.N., Boatin, B.A., McCarthy, J.S., Basanez, M.G.: A research agenda for helminth diseases of humans: the problem of helminthiases. PLoS Negl. Trop. Dis. 6, e1582 (2012). https://doi.org/10.1371/journal.pntd.0001582

    Article  Google Scholar 

  49. Abad, P., Gouzy, J., Aury, J.M., Castagnone-Sereno, P., Danchin, E.G., Deleury, E., et al.: Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26, 909–915 (2008). https://doi.org/10.1038/nbt.1482

    Article  Google Scholar 

  50. Coles, G.C., Jackson, F., Pomroy, W.E., Prichard, R.K., von Samson-Himmelstjerna, G., Silvestre, A., Taylor, M.A., Vercruysse, J.: The detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 136, 167–185 (2006). https://doi.org/10.1016/j.vetpar.2005.11.019

    Article  Google Scholar 

  51. Bar-Eyal, M., Sharon, E., Spiegel, Y.: Nematicidal activity of Chrysanthemum coronarium. Eur. J. Plant Pathol. 114, 427–433 (2006). https://doi.org/10.1007/s10658-006-0011-7

    Article  Google Scholar 

  52. Jiang, Z., Boyd, K.G., Mearns-Spragg, A., Adams, D.R., Wright, P.C., Burgess, J.G.: Two diketopiperazines and one halogenated phenol from cultures of the marine bacterium, Pseudoalteromonas luteoviolacea. Nat. Prod. Lett. 14, 435–440 (2000). https://doi.org/10.1080/10575630008043781

    Article  Google Scholar 

  53. Colgrave, M.L., Kotze, A.C., Ireland, D.C., Wang, C.K., Craik, D.J.: The anthelmintic activity of the cyclotides: natural variants with enhanced activity. Chembiochem. 9, 1939–1945 (2008). https://doi.org/10.1002/cbic.200800174

    Article  Google Scholar 

  54. Chatterjee, J., Laufer, B., Kessler, H.: Synthesis of N-methylated cyclic peptides. Nat. Protoc. 7, 432–444 (2012). https://doi.org/10.1038/nprot.2011.450

    Article  Google Scholar 

  55. Gu, Y.Q., Mo, M.H., Zhou, J.P., Zou, C.S., Zhang, K.Q.: Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol. Biochem. 39, 2567–2575 (2007). https://doi.org/10.1016/j.soilbio.2007.05.011

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed in the framework of the BlueShell project (Exploring Shellfish By-Products as a source of Blue Bioactivies) supported by ERA-Marine Biotech (ERAMBT) and Fonds voor Wetenschappelijk Onderzoek— Vlaanderen (FWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katleen Raes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Tortorella, E., Robbens, J. et al. Bioactivity Screening of Hydrolysates From Brown Crab Processing Side Streams Fermented by Marine Pseudoalteromonas Strains. Waste Biomass Valor 12, 2459–2468 (2021). https://doi.org/10.1007/s12649-020-01195-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01195-y

Keywords

Navigation