Skip to main content
Log in

Anti-Biofilm, Antioxidant and Cytotoxic Potential of F5, a Peptide Derived from Waste Generated During the Processing of the White Shrimp, Metapenaeus monoceros (Fabricius, 1798)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In previous research works, we have described the production of 7 kDa F5 peptide after a hydrolysis of the white shrimp, Metapenaeus monoceros (Fabricius, 1798) by-product, using a serine alkaline protease (SPVP) purified from Aeribacillus pallidus strain VP3. The present study aims to explore the antioxidative potentials of F5 peptide by both in vitro and in vivo assays. The anti-biofilm activity was performed, showing 50% inhibition at 2 µg/mL, 3 µg/mL, 19 µg/mL, and 45 µg/mL for Staphylococcus aureus, Escherichia coli, Bacillus cereus, and Pseudomonas aeruginosa, respectively. Consistently, the antioxidative capacity was tested in vitro against 2,2′-azino-bis-(3-ethylbenz-thiazoline-6-sulfonic acid) (ABTS) cation radical, β-caroten-linoleic acid bleaching, chelating capacity of ferrous ion, and ferric reducing power assays. The cytotoxic effects of F5 peptide on the Human embryonic kidney HEK293 cells were subsequently tested. Remarkably, the F5 peptide was able to improve significantly HEK293 cell viability. To further assess this bioactivity, an in vivo study was performed on adult mice models. The animals were divided into three groups: controls, 100 mg and 200 mg of F5/kg per bodyweight. Indeed, the F5 peptide could prevent the lipid and protein oxidation damage in kidney cells, improving the antioxidative enzymatic and non-enzymatic capacities.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all datasets supporting the findings, used, and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. I. FAO, WFP (2021) The state of food insecurity in the world 2015, Meeting the, 2015.

  2. Chavez, M.: The sustainability of industrial insect mass rearing for food and feed production: zero waste goals through by-product utilization. Curr. Opin. Insect Sci. 48, 44–49 (2021)

    Article  Google Scholar 

  3. Pinheiro, A.C.D.A.S., Martí-Quijal, F.J., Barba, F.J., Tappi, S., Rocculi, P.: Innovative non-thermal technologies for recovery and valorization of value-added products from crustacean processing by-products-An opportunity for a circular economy approach. Foods 10, 2030 (2021)

    Article  Google Scholar 

  4. Hamdi, M., Nasri, R., Dridi, N., Li, S., Nasri, M.: Development of novel high-selective extraction approach of carotenoproteins from blue crab (Portunus segnis) shells, contribution to the qualitative analysis of bioactive compounds by HR-ESI-MS. Food Chem. 302, 125334 (2020)

    Article  Google Scholar 

  5. Mao, X., Guo, N., Sun, J., Xue, C.: Comprehensive utilization of shrimp waste based on biotechnological methods: a review. J. Clean. Prod. 143, 814–823 (2017)

    Article  Google Scholar 

  6. Yuan, G., Li, W., Pan, Y., Wang, C., Chen, H.: Shrimp shell wastes: optimization of peptide hydrolysis and peptide inhibition of α-amylase. Food Biosc. 25, 52–60 (2018)

    Article  Google Scholar 

  7. Pardilhó, S.L., Machado, S., Bessada, S.M.F., Almeida, M.F., Oliveira, M.B., Dias, J.M.: Marine macroalgae waste from Northern Portugal: a potential source of natural pigments. Waste Biomass Valori. 12, 239–249 (2021)

    Article  Google Scholar 

  8. Mechri, S., Sellem, I., Bouacem, K., Jabeur, F., Chamkha, M., Hacene, H., Bouanane-Darenfed, A., Jaouadi, B.: Antioxidant and enzyme inhibitory activities of Metapenaeus monoceros by-product hydrolysates elaborated by purified alkaline proteases. Waste Biomass Valori. 11, 6741–6755 (2020)

    Article  Google Scholar 

  9. Jabeur, F., Mechri, S., Kriaa, M., Gharbi, I., Bejaoui, N., Sadok, S., Jaouadi, B.: Statistical experimental design optimization of microbial proteases production under co-culture conditions for chitin recovery from speckled shrimp Metapenaeus monoceros by-Product. BioMed Res 2020, Article ID 3707804, 10 pages (2020)

    Article  Google Scholar 

  10. Jabeur, F., Mechri, S., Mensi, F., Gharbi, I., Ben Naser, Y., Kriaa, M., Bejaoui, N., Bachouche, S., Badis, A., Annane, R., Djellali, M., Sadok, S., Jaouadi, B.: Extraction and characterization of chitin, chitosan, and protein hydrolysate from the invasive Pacific blue crab, Portunus segnis (Forskål, 1775) having potential biological activities. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-021-18398-y

  11. Korhonen, H., Pihlanto, A.: Bioactive peptides: production and functionality. Int. Dairy J. 16, 945–960 (2006)

    Article  Google Scholar 

  12. Mechri, S., Sellem, I., Bouacem, K., Jabeur, F., Laribi-Habchi, H., Mellouli, L., Hacène, H., Bouanane-Darenfed, A., Jaouadi, B.: A biological clean processing approach for the valorization of speckled shrimp Metapenaeus monoceros by-product as a source of bioactive compounds. Environ. Sci. Pollut. Res. 27, 15842–15855 (2020)

    Article  Google Scholar 

  13. Pearman, N.A., Ronander, E., Smith, A.M., Morris, G.A.: The identification and characterisation of novel bioactive peptides derived from porcine liver. Curr. Res. Nutr. Food Sci. 3, 314–321 (2020)

    Article  Google Scholar 

  14. Mechri, S., Ben Elhoul Berrouina, M., Omrane Benmrad, M., Zaraî Jaouadi, N., Rekik, H., Moujehed, E., Chebbi, A., Sayadi, S., Chamkha, M., Bejar, S., Jaouadi, B.: Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest. Int. J. Biol. Macromol. 94, 221–232 (2017)

    Article  Google Scholar 

  15. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976)

    Article  Google Scholar 

  16. Ben Taheur, F., Kouidhi, B., Fdhila, K., Elabed, H., Slama, R.B., Mahdouani, K., Bakhrouf, A., Chaieb, K.: Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microb. Pathog. 97, 213–220 (2016)

    Article  Google Scholar 

  17. Missaoui, J., Saidane, D., Mzoughi, R., Minervini, F.: Fermented seeds (“Zgougou”) from aleppo pine as a novel source of potentially probiotic lactic acid bacteria. Microorganisms 7, 709 (2019)

    Article  Google Scholar 

  18. Ambalam, P., Kondepudi, K.K., Nilsson, I., Wadström, T., Ljungh, Å.: Bile stimulates cell surface hydrophobicity, Congo red binding and biofilm formation of Lactobacillus strains. FEMS Microbiol. Lett. 333, 10–19 (2012)

    Article  Google Scholar 

  19. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  Google Scholar 

  20. Kirby, A.J., Schmidt, R.J.: The antioxidant activity of Chinese herbs for eczema and of placebo herbsI. J. Ethnopharmacol. 56, 103–108 (1997)

    Article  Google Scholar 

  21. Pratt, D. E.: Natural antioxidants of soybeans and other oil-seeds, Autoxidation in food and biological systems, pp. 283–293. Springer (1980)

  22. Dinis, L.T., Oliveira, M.M., Almeida, J., Costa, R., Gomes-Laranjo, J., Peixoto, F.: Antioxidant activities of chestnut nut of Castanea sativa Mill. (cultivar ‘Judia’) as function of origin ecosystem. Food Chem. 132, 1–8 (2012)

    Article  Google Scholar 

  23. Elloumi Mseddi, J., Jemel Oualha, I., Beji, A., Hakim, B., Aifa, S.: Effect of estradiol and clomiphene citrate on Erk activation in breast cancer cells. J. Recept. Signal Transduct. Res. 35, 202–206 (2015)

    Article  Google Scholar 

  24. Draper, H.H., Hadley, M.: Malondialdehyde determination as index of lipid Peroxidation. Meth. Enzymol. 186, 421–431 (1990)

    Article  Google Scholar 

  25. Kayali, R., Çakatay, U., Akçay, T., Altuğ, T.: Effect of alpha-lipoic acid supplementation on markers of protein oxidation in post-mitotic tissues of ageing rat. Cell Bioch. Funct. 24, 79–85 (2006)

    Article  Google Scholar 

  26. Wolff, P.: Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Meth. Enzymol. 233, 182–189 (1994)

    Article  Google Scholar 

  27. Jiang, Z.Y., Hunt, J.V., Wolff, S.P.: Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202, 384–389 (1992)

    Article  Google Scholar 

  28. Aebi, H.: Catalase in vitro. Meth. Enzymol. 105, 121–126 (1984)

    Article  Google Scholar 

  29. Ellman, G.L.: Tissue sulfhydryl groups. Arch. Biochem. Biophy. 82, 70–77 (1959)

    Article  Google Scholar 

  30. Jollow, D., Mitchell, J., Zampaglione, N.A., Gillette, J.: Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3, 4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11, 151–169 (1974)

    Article  Google Scholar 

  31. Xu, D., Zhang, Y., Cheng, P., Wang, Y., Li, X., Wang, Z., Yi, H., Chen, H.: Inhibitory effect of a novel chicken-derived anti-biofilm peptide on P aeruginosa biofilms and virulence factors. Microb. Pathog. 149, 104514 (2020)

    Article  Google Scholar 

  32. Segev-Zarko, L.A., Saar-Dover, R., Brumfeld, V., Mangoni, M.L., Shai, Y.: Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 468, 259–270 (2015)

    Article  Google Scholar 

  33. Doiron, K., Beaulieu, L., St-Louis, R., Lemarchand, K.: Reduction of bacterial biofilm formation using marine natural antimicrobial peptides. Colloids Surf B: Biointerfaces 167, 524–530 (2018)

    Article  Google Scholar 

  34. Bougatef, H., Krichen, F., Kobbi, S., Martinez-Alvarez, O., Nedjar, N., Bougatef, A., Sila, A.: Physicochemical and biological properties of eel by-products protein hydrolysates: potential application to meat product preservation. Waste Biomass Valori. 11, 931–942 (2020)

    Article  Google Scholar 

  35. Zamorano-Apodaca, J.C., García-Sifuentes, C.O., Carvajal-Millán, E., Vallejo-Galland, B., Scheuren-Acevedo, S.M., Lugo-Sánchez, M.E.: Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chem. 331, 127350 (2020)

    Article  Google Scholar 

  36. Jemil, I., Abdelhedi, O., Mora, L., Nasri, R., Aristoy, M.C., Jridi, M., Hajji, M., Toldrá, F., Nasri, M.: Peptidomic analysis of bioactive peptides in zebra blenny (Salaria basilisca) muscle protein hydrolysate exhibiting antimicrobial activity obtained by fermentation with Bacillus mojavensis A21. Process Biochem. 51, 2186–2197 (2016)

    Article  Google Scholar 

  37. Zou, Y., Tortorella, E., Robbens, J., Heyndrickx, M., Debode, J., De Pascale, D., Raes, K.: Bioactivity screening of hydrolysates from brown crab processing side streams fermented by marine Pseudoalteromonas strains. Waste Biomass Valori. 12, 2459–2468 (2021)

    Article  Google Scholar 

  38. Elias, R.J., Kellerby, S.S., Decker, E.A.: antioxidant activity of proteins and peptides. Critical Crit. Rev. Food Sci. Nutr. 48, 430–441 (2008)

    Article  Google Scholar 

  39. Jemil, I., Mora, L., Nasri, R., Abdelhedi, O., Aristoy, M.C., Hajji, M., Nasri, M., Toldrá, F.: A peptidomic approach for the identification of antioxidant and ACE-inhibitory peptides in sardinelle protein hydrolysates fermented by Bacillus subtilis A26 and Bacillus amyloliquefaciens An6. Food Res. Int. 89, 347–358 (2016)

    Article  Google Scholar 

  40. A. Feki, I. Jaballi, B. Cherif, N. Ktari, M. Naifar, F. Makni Ayadi, R. Kallel, O. Boudawara, C. Kallel, M. Nasri, Therapeutic potential of polysaccharide extracted from fenugreek seeds against thiamethoxam-induced hepatotoxicity and genotoxicity in Wistar adult rats, Toxicol. Mech. Methods 29, 355–367 (2019).

  41. Rodrigues, K.J.A., Santana, M.B., Do Nascimento, J.L.M., Picanço-Diniz, D.L.W., Maués, L.A.L., Santos, S.N., Ferreira, V.M.M., Alfonso, M., Durán, R., Faro, L.R.F.: Behavioral and biochemical effects of neonicotinoid thiamethoxam on the cholinergic system in rats. Ecotoxicol. Environ. Saf. 73, 101–107 (2010)

    Article  Google Scholar 

  42. Makni, M., Jemai, R., Kriaa, W., Chtourou, Y., Fetoui, H.: Citrus limon from Tunisia: Phytochemical and physicochemical properties and biological activities. BioMed Res. Int. 2018, 6251546 (2018)

    Article  Google Scholar 

  43. Aoiadni, N., Ayadi, H., Jdidi, H., Naifar, M., Maalej, S., Makni, F.A., El Feki, A., Fetoui, H., Koubaa, F.G.: Flavonoid-rich fraction attenuates permethrin-induced toxicity by modulating ROS-mediated hepatic oxidative stress and mitochondrial dysfunction ex vivo and in vivo in rat. Environ. Sci. Pollut. Res. 28, 9290–9312 (2021)

    Article  Google Scholar 

  44. Gargouri, B., Boukholda, K., Kumar, A., Benazzouz, A., Fetoui, H., Fiebich, B.L., Bouchard, M.: Bifenthrin insecticide promotes oxidative stress and increases inflammatory mediators in human neuroblastoma cells through NF-kappaB pathway. Toxicol. In Vitro 65, 104792 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. M. Chamkha (LBPE, CBS, Tunisia) for his kind gift of the Aeribacillus pallidus strain VP3. They also extend their thanks to Mr. C. Tmar (Dept. Biology, Faculty of Sciences, University of Sfax, Tunisia) for his kind assistance in feeding and watering mice in the Pet Shop during the experimentation period. The authors would also like to express their sincere gratitude to Mrs. L. Mahfoudhi, Professor of English language, Senior ESL/EFL Instructor, Translator, and Proofreader expert, from the English Language Section of the Faculty of Sciences of Sfax, University of Sfax, Tunisia, for English editing and proofreading services.

Funding

This study was supported by the Ministry of Higher Education and Scientific Research (MESRS) in Tunisia under the framework of the Contract Programs LBMIE-CBS, code Grants Nos.: LR15CBS06 (2015–2018 and 2019–2022), the Multilateral Project Partenariats Hubert Curien (PHC)-Maghreb 2020 Program (FranMaghZYM 2020–2023, code Campus France: 43791TM & code PHC: 01MAG20), and the Algerian-Tunisian RDP Cooperation Program 2021–2024 (AliPoiAgro, code PRD/TN/DZ/21/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassem Jaouadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors declare no competing financial interests.

Ethical Approval

The experimental proceedings were executed following the general recommendations on the use of living animals in scientific explorations, endorsed by the Ethical Committee of the Sciences Faculty of Guidelines for Care and Use of Laboratory Animals of Tunis University and approved by the Animal Ethics Committee of National Institute of Health Sfax. These efforts were followed to reduce animal numbers and their sufferance.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mechri, S., Jaballi, I., Ben Taheur, F. et al. Anti-Biofilm, Antioxidant and Cytotoxic Potential of F5, a Peptide Derived from Waste Generated During the Processing of the White Shrimp, Metapenaeus monoceros (Fabricius, 1798). Waste Biomass Valor 13, 3233–3244 (2022). https://doi.org/10.1007/s12649-022-01722-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01722-z

Keywords

Navigation