Skip to main content
Log in

Effect of the Purification Treatment on the Valorization of Natural Cellulosic Residues as Fillers in PHB-Based Composites for Short Shelf Life Applications

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work the effect of a combined NaOH + peracetic acid (PAA) purification treatment on the valorization of almond shell (AS) and rice husk (RH) lignocellulosic residues as fillers in PHB-based composites for short shelf life applications has been studied. The efficiency of the treatment at removing the non-cellulosic components of the fibers has been evaluated by SEM, FTIR, WAXS and TGA taking a commercial cellulose as reference. The influence of the untreated and treated fibers on the morphology, thermal, crystallization, tensile properties, fracture toughness and dynamo mechanical behavior of the PHB/fiber composites has been studied. The treatment has demonstrated its ability at removing the lignin, hemicelluloses and waxes allowing the obtention of fibers with relative crystallinity, thermal stability and composition similar to the commercial cellulose. The different agro-food based lignocellulosic residues used resulted in two suitable reinforcing fillers for a PHB matrix. Hence, composites prepared with the treated fibers presented better thermal and mechanical performance than those prepared with the untreated ones. Therefore, the so-obtained purified residue fibers are comparable to a pure cellulose as a filler for PHB composites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lambert, S., Wagner, M.: Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46, 6855–6871 (2017). https://doi.org/10.1039/c7cs00149e

    Article  Google Scholar 

  2. Możejko-Ciesielska, J., Kiewisz, R.: Bacterial polyhydroxyalkanoates: still fabulous? Microbiol. Res. 192, 271–282 (2016). https://doi.org/10.1016/j.micres.2016.07.010

    Article  Google Scholar 

  3. Singh, M., Kumar, P., Ray, S., Kalia, V.C.: Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J. Microbiol. 55, 235–249 (2015). https://doi.org/10.1007/s12088-015-0528-6

    Article  Google Scholar 

  4. Wang, Y., Yin, J., Chen, G.Q.: Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol. 30, 59–65 (2014). https://doi.org/10.1016/j.copbio.2014.06.001

    Article  Google Scholar 

  5. Anjum, A., Zuber, M., Zia, K.M., Noreen, A., Anjum, M.N., Tabasum, S.: Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89, 161–174 (2016). https://doi.org/10.1016/j.ijbiomac.2016.04.069

    Article  Google Scholar 

  6. Laycock, B., Halley, P., Pratt, S., Werker, A., Lant, P.: The chemomechanical properties of microbial polyhydroxyalkanoates. Progress Polym. Sci. 38, 536–583 (2013). https://doi.org/10.1016/j.progpolymsci.2012.06.003

    Article  Google Scholar 

  7. Cava, D., Giménez, E., Gavara, R., Lagaron, J.M.: Comparative performance and barrier properties of biodegradable thermoplastics and nanobiocomposites versus PET for food packaging applications. J. Plast. Film Sheeting. 22, 265–274 (2006). https://doi.org/10.1177/8756087906071354

    Article  Google Scholar 

  8. Bugnicourt, E., Cinelli, P., Lazzeri, A., Alvarez, V.: Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 8, 791–808 (2014). https://doi.org/10.3144/expresspolymlett.2014.82

    Article  Google Scholar 

  9. Corre, Y.-M., Bruzaud, S., Audic, J.-L., Grohens, Y.: Morphology and functional properties of commercial polyhydroxyalkanoates: a comprehensive and comparative study. Polym. Test. 31, 226–235 (2012). https://doi.org/10.1016/j.polymertesting.2011.11.002

    Article  Google Scholar 

  10. Liu, Q.-S., Zhu, M.-F., Wu, W.-H., Qin, Z.-Y.: Reducing the formation of six-membered ring ester during thermal degradation of biodegradable PHBV to enhance its thermal stability. Polym. Degrad. Stab. 94, 18–24 (2009). https://doi.org/10.1016/j.polymdegradstab.2008.10.016

    Article  Google Scholar 

  11. Mohanty, A.K., Vivekanandhan, S., Pin, J.M., Misra, M.: Composites from renewable and sustainable resources: challenges and innovations. Science 362, 536–542 (2018). https://doi.org/10.1126/science.aat9072

    Article  Google Scholar 

  12. Väisänen, T., Haapala, A., Lappalainen, R., Tomppo, L.: Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: a review. Waste Manag. 54, 62–73 (2016). https://doi.org/10.1016/j.wasman.2016.04.037

    Article  Google Scholar 

  13. Berthet, M.-A., Angellier-Coussy, H., Guillard, V., Gontard, N.: Vegetal fiber-based biocomposites: which stakes for food packaging applications? J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.42528

    Article  Google Scholar 

  14. Pereira, P.H.F., de Rosa, M.F., Cioffi, M.O.H., de Benini, K.C.C., Milanese, A.C., Voorwald, H.J.C., Mulinari, D.R.: Vegetal fibers in polymeric composites: a review. Polímeros 25, 9–22 (2015). https://doi.org/10.1590/0104-1428.1722

    Article  Google Scholar 

  15. Loureiro, N.C., Esteves, J.L., Viana, J.C., Ghosh, S.: Development of polyhydroxyalkanoates/poly(lactic acid) composites reinforced with cellulosic fibers. Compos. Part B Eng. 60, 603–611 (2014). https://doi.org/10.1016/j.compositesb.2014.01.001

    Article  Google Scholar 

  16. Georgiopoulos, P., Christopoulos, A., Koutsoumpis, S., Kontou, E.: The effect of surface treatment on the performance of flax/biodegradable composites. Compos. Part B Eng. 106, 88–98 (2016). https://doi.org/10.1016/j.compositesb.2016.09.027

    Article  Google Scholar 

  17. Satyanarayana, K.G., Arizaga, G.G.C., Wypych, F.: Biodegradable composites based on lignocellulosic fibers—An overview. Progress Polym. Sci. 34, 982–1021 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.002

    Article  Google Scholar 

  18. Basalp, D., Tihminlioglu, F., Sofuoglu, S.C., Inal, F., Sofuoglu, A.: Utilization of municipal plastic and wood waste in industrial manufacturing of wood plastic composites. Waste Biomass Valoriz. (2020). https://doi.org/10.1007/s12649-020-00986-7

    Article  Google Scholar 

  19. Hejna, A., Sulyman, M., Przybysz, M., Saeb, M.R., Klein, M., Formela, K.: On the correlation of lignocellulosic filler composition with the performance properties of Poly(ε-Caprolactone) based biocomposites. Waste Biomass Valoriz. 11, 1467–1479 (2018). https://doi.org/10.1007/s12649-018-0485-5

    Article  Google Scholar 

  20. Picard, M.C., Rodriguez-Uribe, A., Thimmanagari, M., Misra, M., Mohanty, A.K.: Sustainable biocomposites from poly(butylene succinate) and apple pomace: a study on compatibilization performance. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-019-00591-3

    Article  Google Scholar 

  21. Sánchez-Safont, E.L., Aldureid, A., Lagarón, J.M., Gámez-Pérez, J., Cabedo, L.: Biocomposites of different lignocellulosic wastes for sustainable food packaging applications. Compos. Part B Eng. 145, 215–225 (2018). https://doi.org/10.1016/j.compositesb.2018.03.037

    Article  Google Scholar 

  22. Kumar, R., Hu, F., Hubbell, C.A., Ragauskas, A.J., Wyman, C.E.: Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Bioresour. Technol. 130, 372–381 (2013). https://doi.org/10.1016/j.biortech.2012.12.028

    Article  Google Scholar 

  23. Zhao, X., van der Heide, E., Zhang, T., Liu, D.: Delignification of sugarcane bagasse with alkali and peracetic acid and characterization of the pulp. BioResources 5, 1565–1580 (2010)

    Google Scholar 

  24. Mariano, M., Cercená, R., Soldi, V.: Thermal characterization of cellulose nanocrystals isolated from sisal fibers using acid hydrolysis. Ind. Crops Prod. 94, 454–462 (2016). https://doi.org/10.1016/j.indcrop.2016.09.011

    Article  Google Scholar 

  25. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M.: An Empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 29, 786–794 (1959). https://doi.org/10.1177/004051755902901003

    Article  Google Scholar 

  26. Brown, R.: Fracture mechanics testing methods for polymers adhesives and composites. Polym. Test. 21, 363 (2002). https://doi.org/10.1016/S0142-9418(01)00080-0

    Article  Google Scholar 

  27. Carli, L.N., Crespo, J.S., Mauler, R.S.: PHBV nanocomposites based on organomodified montmorillonite and halloysite: the effect of clay type on the morphology and thermal and mechanical properties Compos. Part A Appl. Sci. Manuf. 42(1601), 1608 (2011). https://doi.org/10.1016/j.compositesa.2011.07.007

    Article  Google Scholar 

  28. Arjmandi, R., Hassan, A., Majeed, K., Zakaria, Z.: Rice husk filled polymer composites. Int. J. Polym. Sci. (2015). https://doi.org/10.1155/2015/501471

    Article  Google Scholar 

  29. Khiari, R., Mhenni, M.F., Belgacem, M.N., Mauret, E.: Valorisation of vegetal wastes as a source of cellulose and cellulose derivatives. J. Polym. Environ. 19, 80–89 (2011). https://doi.org/10.1007/s10924-010-0207-y

    Article  Google Scholar 

  30. Paschoal, G.B., Muller, C.M.O., Carvalho, G.M., Tischer, C.A., Mali, S.: Isolation and characterization of nanofibrillated cellulose from oat hulls. Quim. Nova. 38, 478–482 (2015). https://doi.org/10.5935/0100-4042.20150029

    Article  Google Scholar 

  31. Battegazzore, D., Bocchini, S., Alongi, J., Frache, A., Marino, F.: Cellulose extracted from rice husk as filler for poly(lactic acid): preparation and characterization. Cellulose 21, 1813–1821 (2014). https://doi.org/10.1007/s10570-014-0207-5

    Article  Google Scholar 

  32. Urruzola, I., Robles, E., Serrano, L., Labidi, J.: Nanopaper from almond (Prunus dulcis) shell. Cellulose 21, 1619–1629 (2014). https://doi.org/10.1007/s10570-014-0238-y

    Article  Google Scholar 

  33. Duan, L., Yu, W., Li, Z.: Analysis of structural changes in jute fibers after peracetic acid treatment. J. Eng. Fiber. Fabr. 12, 33–42 (2017). https://doi.org/10.1177/155892501701200104

    Article  Google Scholar 

  34. Ndazi, B.S., Karlsson, S., Tesha, J.V., Nyahumwa, C.W.: Chemical and physical modifications of rice husks for use as composite panels. Compos. Part A Appl. Sci. Manuf. 38, 925–935 (2007). https://doi.org/10.1016/j.compositesa.2006.07.004

    Article  Google Scholar 

  35. El Mechtali, F.Z., Essabir, H., Nekhlaoui, S., Bensalah, M.O., Jawaid, M., Bouhfid, R., Qaiss, A.: Mechanical and thermal properties of polypropylene reinforced with almond shells particles: impact of chemical treatments. J. Bionic Eng. 12, 483–494 (2015). https://doi.org/10.1016/S1672-6529(14)60139-6

    Article  Google Scholar 

  36. Chanda, A.K., Hazra, A., Praveen Kumar, M., Neogi, S., Neogi, S.: Chemical treatments of rice husk filler and jute fiber for the use in green composites. Fibers Polym. 16, 902–910 (2015). https://doi.org/10.1007/s12221-015-0902-3

    Article  Google Scholar 

  37. Johar, N., Ahmad, I., Dufresne, A.: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind. Crop. Prod. 37, 93–99 (2012). https://doi.org/10.1016/j.indcrop.2011.12.016

    Article  Google Scholar 

  38. Paulo, J., Oliveira, D., Pinheiro, G., Oliveira, K., Lisie, S., El, M., Silveira, G., Renato, A., Dias, G., Zavareze, R.: Cellulose fibers extracted from rice and oat husks and their application in hydrogel. Food Chem. 221, 153–160 (2017). https://doi.org/10.1016/j.foodchem.2016.10.048

    Article  Google Scholar 

  39. Rosa, S.M.L., Rehman, N., Miranda, M.I.G.D., Nachtigall, S.M.B., Bica, C.I.D.: Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohydr. Polym. 87, 1131–1138 (2012). https://doi.org/10.1016/j.carbpol.2011.08.084

    Article  Google Scholar 

  40. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007). https://doi.org/10.1016/j.fuel.2006.12.013

    Article  Google Scholar 

  41. Tobergte, D.R., Curtis, S.: Biocomposites: desing and mechanical performance. Elsevier Inc, Amsterdam (2013)

    Google Scholar 

  42. Gunning, M.A., Geever, L.M., Killion, J.A., Lyonsa, J.G., Higginbotham, C.L.: Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polym. Test 32, 1603–1611 (2013)

    Article  Google Scholar 

  43. Torres-Tello, E.V., Robledo-Ortíz, J.R., González-García, Y., Pérez-Fonseca, A.A., Jasso-Gastinel, C.F., Mendizábal, E.: Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind. Crops Prod. 99, 117–125 (2017). https://doi.org/10.1016/j.indcrop.2017.01.035

    Article  Google Scholar 

  44. Fei, B., Chen, C., Chen, S., Peng, S., Zhuang, Y., An, Y., Dong, L.: Crosslinking of poly[(3-hydroxybutyrate)-co-(3-hydroxyvalerate)] using dicumyl peroxide as initiator. Polym. Int. 53, 937–943 (2004). https://doi.org/10.1002/pi.1477

    Article  Google Scholar 

  45. Srubar, W.V., Wright, Z.C., Tsui, A., Michel, A.T., Billington, S.L., Frank, C.W.: Characterizing the effects of ambient aging on the mechanical and physical properties of two commercially available bacterial thermoplastics. Polym Degrad Stab 97, 1922–1929 (2012)

    Article  Google Scholar 

  46. Esposito, A., Delpouve, N., Causin, V., Dhotel, A., Delbreilh, L., Dargent, E.: From a three-phase model to a continuous description of molecular mobility in semicrystalline poly(hydroxybutyrate-co-hydroxyvalerate). Macromolecules 49, 4850–4861 (2016). https://doi.org/10.1021/acs.macromol.6b00384

    Article  Google Scholar 

  47. Sánchez-Safont, E.L., González-Ausejo, J., Gámez-Pérez, J., Lagarón, J.M., Cabedo, L.: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/purified cellulose fiber composites by melt blending: characterization and degradation in composting conditions. J. Renew. Mater. 4, 123–132 (2016). https://doi.org/10.7569/JRM.2015.634127

    Article  Google Scholar 

  48. Turi, E.A.: Thermal characterization of polymeric materials. Academic Press, Cambridge (1981)

    Google Scholar 

  49. Saba, N., Jawaid, M., Alothman, O.Y., Paridah, M.T.: A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 106, 149–159 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.075

    Article  Google Scholar 

  50. Wong, S., Shanks, R., Hodzic, A.: Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Compos. Sci. Technol. 64, 1321–1330 (2004). https://doi.org/10.1016/j.compscitech.2003.10.012

    Article  Google Scholar 

  51. Wu, C.S.: Preparation and characterization of polyhydroxyalkanoate bioplastic-based green renewable composites from rice husk. J. Polym. Environ. 22, 384–392 (2014). https://doi.org/10.1007/s10924-014-0662-y

    Article  Google Scholar 

  52. Grassie, N., Murray, E.J., Holmes, P.A.: The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 2-changes in molecular weight. Polym. Degrad. Stab. 6, 95–103 (1984). https://doi.org/10.1016/0141-3910(84)90075-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support for this research from Ministerio de Ciencia, Innovación y Universidades (RTI2018-097249-B-C22), Pla de Promoció de la Investigació de la Universitat Jaume I (UJI-B2019-44) and H2020 EU Project YPACK (H2020-SFS-2017-1, Reference 773872). Authors would like to acknowledge the Instituto de Tecnología de Materiales of Universitat Politècnica de València-Campus de Alcoy, the Unidad Asociada IATA-UJI “Polymers Technology” and Servicios Centrales de Instrumentación Científica (SCIC) of Universitat Jaume I. We are also grateful to Raquel Oliver and Jose Ortega for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Cabedo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Safont, E.L., Aldureid, A., Lagarón, J.M. et al. Effect of the Purification Treatment on the Valorization of Natural Cellulosic Residues as Fillers in PHB-Based Composites for Short Shelf Life Applications. Waste Biomass Valor 12, 2541–2556 (2021). https://doi.org/10.1007/s12649-020-01192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01192-1

Keywords

Navigation