Skip to main content

Advertisement

Log in

Secondary Agriculture Residues Pretreatment Using Deep Eutectic Solvents

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this work is to investigate a new class of solvents for separating secondary agricultural residues, which have already been transported to processing centers, into individual biomass components. Using biocompatible deep eutectic solvents (DES) on secondary agricultural residues could valorize these wastes into bioproducts by separating lignin from cellulose. DES pretreatment to achieve this separation involves chemicals that are less hazardous for the environment than other pretreatments.

Methods

Five deep eutectic solvents that are biocompatible have been investigated for their ability to deconstruct rice hulls and sugarcane bagasse. Mass yield, enzymatic hydrolysis of the pretreated biomass, fiber analysis, pKa analysis and Fourier transform infrared spectroscopy (FTIR) were performed to explore the effect of the DES on these secondary agricultural residues.

Results

Experimental results confirmed that the DES formic acid:choline chloride (FA:CC), lactic acid:choline chloride, and acetic acid:choline chloride were effective in removing lignin, thus concentrating cellulose in both pretreated biomass. Addition of water precipitated lignin from the spent DES, as confirmed by FTIR. However, the higher pKa DES lactic acid:betaine and lactic acid:proline had little effect on rice hulls or sugarcane bagasse. FA:CC was the most effective of the DES tested in preparing the biomass for enzymatic saccharification. All the effectively pretreated samples had higher inorganic content compared to the relevant raw biomass.

Conclusions

DES with stronger acidity (lower pKa) were found to be more efficient for delignification, leading to higher glucose yield. Further work is required to determine how inorganics affect waste biomass pretreatment.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferreira, E.M., Pires, A.V., Susin, I., Mendes, C.Q., Gentil, R.S., Araujo, R.C., Amaral, R.C., Loerch, S.C.: Growth, feed intake, carcass characteristics, and eating behavior of feedlot lambs fed high-concentrate diets containing soybean hulls. J. Anim. Sci. 89(12), 4120–4126 (2011)

    Article  Google Scholar 

  2. Baba, M., Nasiru, A., Karkarna, I.S., Muhammad, I.R., Rano, N.B.: Nutritional evaluation of sweet potato vines from twelve cultivars as feed for ruminant animals. Asian J Anim. Vet. Adv. 13(1), 25–29 (2018)

    Article  Google Scholar 

  3. Zadrazil, F., Puniya, A.K.: Studies on the effect of particle size on solid-state fermentation of sugarcane bagasse into animal feed using white-rot fungi. Bioresour. Technol. 54(1), 85–87 (1995). https://doi.org/10.1016/0960-8524(95)00119-0

    Article  Google Scholar 

  4. Lim, J.S., Manan, Z.A., Alwi, S.R.W., Hashim, H.: A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 16(5), 3084–3094 (2012). https://doi.org/10.1016/j.rser.2012.02.051

    Article  Google Scholar 

  5. Ouyang, Y.S.: Mesomechanical characterization of in situ rice grain hulls. Trans. Asae 44(2), 357–367 (2001)

    Article  Google Scholar 

  6. Reza, M.T., Uddin, M.H., Lynam, J.G., Coronella, C.J.: Engineered pellets from dry torrefied and HTC biochar blends. Biomass Bioenergy 63, 229–238 (2014). https://doi.org/10.1016/j.biombioe.2014.01.038

    Article  Google Scholar 

  7. Glasser, W.G.: About making lignin great again—some lessons from the past. Front. Chem. (2019). https://doi.org/10.3389/fchem.2019.00565

    Article  Google Scholar 

  8. Catalan, L.J.J., Liang, V., Jia, C.Q., Walton, C.: Effects of process changes on concentrations of individual malodorous sulphur compounds in ambient air near a Kraft pulp plant in Thunder Bay, Ontario, Canada. WIT Trans. Ecol. Environ. 101, 437–447 (2007). https://doi.org/10.2495/air070431

    Article  Google Scholar 

  9. Ruiz, H.A., Da Silva, F.F.M., Vicente, A.A., Teixeira, J.A., Ruzene, D.S., Silva, D.P.: Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl. Biochem. Biotechnol. 164(5), 629–641 (2011). https://doi.org/10.1007/s12010-011-9163-9

    Article  Google Scholar 

  10. Brandt, A., Gräsvik, J., Hallett, J.P., Welton, T.: Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 15(3), 550–583 (2013). https://doi.org/10.1039/c2gc36364j

    Article  Google Scholar 

  11. Lee, Y.R., Row, K.H.: Comparison of ionic liquids and deep eutectic solvents as additives for the ultrasonic extraction of astaxanthin from marine plants. J. Ind. Eng. Chem. 39, 87–92 (2016). https://doi.org/10.1016/j.jiec.2016.05.014

    Article  Google Scholar 

  12. Francisco, M., van den Bruinhorst, A., Kroon, M.C.: New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem. 14(8), 2153–2157 (2012). https://doi.org/10.1039/c2gc35660k

    Article  Google Scholar 

  13. Chen, W., Wang, J., Jiang, J., Zhao, X., Mu, T., Xue, Z.: Investigation on the thermal stability of deep eutectic solvents. Wuli Huaxue Xuebao/Acta Phys. Chim. Sin. 34(8), 904–911 (2018). https://doi.org/10.3866/PKU.WHXB201712281

    Article  Google Scholar 

  14. Zhu, J., Xu, Y., Feng, X., Zhu, X.: A detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: their influence on SO2 absorption behavior. J. Ind. Eng. Chem. 67, 148–155 (2018). https://doi.org/10.1016/j.jiec.2018.06.025

    Article  Google Scholar 

  15. Gorke, J., Srienc, F., Kazlauskas, R.: Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol. Bioprocess Eng. 15(1), 40–53 (2010). https://doi.org/10.1007/s12257-009-3079-z

    Article  Google Scholar 

  16. Lamers, P., Roni, M.S., Tumuluru, J.S., Jacobson, J.J., Cafferty, K.G., Hansen, J.K., Kenney, K., Teymouri, F., Bals, B.: Techno-economic analysis of decentralized biomass processing depots. Bioresour. Technol. 194, 205–213 (2015). https://doi.org/10.1016/j.biortech.2015.07.009

    Article  Google Scholar 

  17. Yu, D., Mou, H., Fu, H., Lan, X., Wang, Y., Mu, T.: “Inverted” Deep Eutectic Solvents Based on Host-Guest Interactions. Chem. Asian J. 14(23), 4183–4188 (2019)

    Article  Google Scholar 

  18. Yu, D., Mou, H., Zhao, X., Wang, Y., Mu, T.: Eutectic molecular liquids based on hydrogen bonding and π–π interaction for exfoliating two-dimensional materials and recycling polymers. Chem. Asian J. 14(19), 3350–3356 (2019)

    Article  Google Scholar 

  19. Yu, D., Mu, T.: Strategy to form eutectic molecular liquids based on noncovalent interactions. J. Phys. Chem. B 123(23), 4958–4966 (2019)

    Article  Google Scholar 

  20. Yiin, C.L., Quitain, A.T., Yusup, S., Sasaki, M., Uemura, Y., Kida, T.: Characterization of natural low transition temperature mixtures (LTTMs): Green solvents for biomass delignification. Bioresour. Technol. 199, 258–264 (2016). https://doi.org/10.1016/j.biortech.2015.07.103

    Article  Google Scholar 

  21. Perez-Sanchez, M., Sandoval, M., Hernaiz, M.J., de Maria, P.D.: Biocatalysis in biomass-derived solvents: the quest for fully sustainable chemical processes. Curr. Org. Chem. 17(11), 1188–1199 (2013)

    Article  Google Scholar 

  22. Huo, Z., Fang, Y., Yao, G., Zeng, X., Ren, D., Jin, F.: Improved two-step hydrothermal process for acetic acid production from carbohydrate biomass. J. Energy Chem. 24, 207–212 (2015). https://doi.org/10.1016/s2095-4956(15)60302-3

    Article  Google Scholar 

  23. Reichert, J., Wasserscheid, P., Albert, J., Brunner, B., Jess, A.: Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts—boosting FA selectivity by in-situ extraction. Energy Environ. Sci. 8(10), 2985–2990 (2015). https://doi.org/10.1039/c5ee01706h

    Article  Google Scholar 

  24. Yang, L., Su, J., Carl, S., Lynam, J.G., Yang, X., Lin, H.: Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl. Catal. B 162, 149–157 (2015). https://doi.org/10.1016/j.apcatb.2014.06.025

    Article  Google Scholar 

  25. Kumar, A.K., Parikh, B.S., Shah, E., Liu, L.Z., Cotta, M.A.: Cellulosic ethanol production from green solvent-pretreated rice straw. Biocatal. Agric. Biotechnol. 7, 14–23 (2016). https://doi.org/10.1016/j.bcab.2016.04.008

    Article  Google Scholar 

  26. Xu, G.C., Ding, J.C., Han, R.Z., Dong, J.J., Ni, Y.: Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. Bioresour. Technol. 203, 364–369 (2016). https://doi.org/10.1016/j.biortech.2015.11.002

    Article  Google Scholar 

  27. Zhao, Z., Chen, X., Ali, M.F., Abdeltawab, A.A., Yakout, S.M., Yu, G.: Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour. Technol. 263, 325–333 (2018). https://doi.org/10.1016/j.biortech.2018.05.016

    Article  Google Scholar 

  28. Plaza, A., Tapia, X., Yañez, C., Candia, O., Vilches, F., Cabezas, R., Romero, J.: Obtaining hydroxytyrosol from olive mill waste using deep eutectic solvents and then supercritical CO2. Waste Biomass Valorization (2019). https://doi.org/10.1007/s12649-019-00836-1

    Article  Google Scholar 

  29. Zhang, C.-W., Xia, S.-Q., Ma, P.-S.: Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol. 219, 1–5 (2016)

    Article  Google Scholar 

  30. Hou, X.-D., Li, A.-L., Lin, K.-P., Wang, Y.-Y., Kuang, Z.-Y., Cao, S.-L.: Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment. Bioresour. Technol. 249, 261–267 (2018). https://doi.org/10.1016/j.biortech.2017.10.019

    Article  Google Scholar 

  31. Vigier, K.D.O., Chatel, G., Jérôme, F.: Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7(8), 1250–1260 (2015). https://doi.org/10.1002/cctc.201500134

    Article  Google Scholar 

  32. Lynam, J.G., Kumar, N., Wong, M.J.: Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour. Technol. 238, 684–689 (2017). https://doi.org/10.1016/j.biortech.2017.04.079

    Article  Google Scholar 

  33. Liu, Q., Mou, H., Chen, W., Zhao, X., Yu, H., Xue, Z., Mu, T.: Highly efficient dissolution of lignin by eutectic molecular liquids. Ind. Eng. Chem. Res. 58(51), 23438–23444 (2019)

    Article  Google Scholar 

  34. Liu, Q., Zhao, X., Yu, D., Yu, H., Zhang, Y., Xue, Z., Mu, T.: Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin. Green Chem. 21(19), 5291–5297 (2019)

    Article  Google Scholar 

  35. Xing, W., Xu, G., Dong, J., Han, R., Ni, Y.: Novel dihydrogen-bonding deep eutectic solvents: pretreatment of rice straw for butanol fermentation featuring enzyme recycling and high solvent yield. Chem. Eng. J. 333, 712–720 (2018)

    Article  Google Scholar 

  36. Yu, Q., Zhang, A., Wang, W., Chen, L., Bai, R., Zhuang, X., Wang, Q., Wang, Z., Yuan, Z.: Deep eutectic solvents from hemicellulose-derived acids for the cellulosic ethanol refining of Akebia’herbal residues. Bioresour. Technol. 247, 705–710 (2018)

    Article  Google Scholar 

  37. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Lab. Anal. proced. 1617, 1–16 (2008)

    Google Scholar 

  38. Arafat, S., Kumar, N., Wasiuddin, N.M., Owhe, E.O., Lynam, J.G.: Sustainable lignin to enhance asphalt binder oxidative aging properties and mix properties. J. Clean. Prod. 217, 456–468 (2019). https://doi.org/10.1016/j.jclepro.2019.01.238

    Article  Google Scholar 

  39. Kumar, N., Muley, P.D., Boldor, D., Coty IV, G.G., Lynam, J.G.: Pretreatment of waste biomass in deep eutectic solvents: conductive heating versus microwave heating. Ind. Crops Prod. 142, 111865 (2019)

    Article  Google Scholar 

  40. Ioelovich, M.: Correlation analysis of enzymatic digestibility of plant biomass. Biomass Convers. Bioref. 4(3), 269–275 (2014). https://doi.org/10.1007/s13399-013-0109-z

    Article  Google Scholar 

  41. Zhao, X., Zhang, L., Liu, D.: Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Bioref. 6(4), 465–482 (2012)

    Article  Google Scholar 

  42. Kumar, A.K., Parikh, B.S., Pravakar, M.: Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ. Sci. Pollut. Res. 23(10), 9265–9275 (2016)

    Article  Google Scholar 

  43. Procentese, A., Johnson, E., Orr, V., Campanile, A.G., Wood, J.A., Marzocchella, A., Rehmann, L.: Deep eutectic solvent pretreatment and subsequent saccharification of corncob. Bioresour. technol. 192, 31–36 (2015)

    Article  Google Scholar 

  44. Zulkefli, S., Abdulmalek, E., Rahman, M.B.A.: Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renew. Energy 107, 36–41 (2017)

    Article  Google Scholar 

  45. Yang, H., Wang, L., Jia, L., Qiu, C., Pang, Q., Pan, X.: Selective decomposition of cellulose into glucose and levulinic acid over fe-resin catalyst in NaCl solution under hydrothermal conditions. Ind. Eng. Chem. Res. 53(15), 6562–6568 (2014). https://doi.org/10.1021/ie500318t

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to sincerely acknowledge the Louisiana Board of Regents Research competitive subprogram (Award# LEQSF(2017-20)-Rd-A11) and the Region 6 Environmental Protection Agency P2 Grant [Grant Number NP-01F55301-0] for support of this project. The authors appreciate the help of Dr. Adarsh Radadia and Dr. Sven Eklund.

Author information

Authors and Affiliations

Authors

Contributions

NK: conceptualization, supervision, formal analysis, writing. JGL: project administration, supervision, writing—review & editing, funding acquisition. RG: data curation, visualization. JDS: investigation, data curation, visualization, GGC, IV: investigation, data curation, visualization.

Corresponding author

Correspondence to Joan G. Lynam.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Gautam, R., Stallings, J.D. et al. Secondary Agriculture Residues Pretreatment Using Deep Eutectic Solvents. Waste Biomass Valor 12, 2259–2269 (2021). https://doi.org/10.1007/s12649-020-01176-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01176-1

Keywords

Navigation