Skip to main content

Advertisement

Log in

Green Glass Foams from Wastes Designed for Thermal Insulation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Glass foams were successfully produced from discarded glass bottles (GB) and pine scales (PS) as pore former agent in contents between 1 and 50 vol%. Samples containing glass and pine scale wastes in powder form were homogenized and uniaxially pressed (20 MPa). The obtained powder compacts were dried (room temperature/24 h and 110 ºC/24 h), fired at 850 ºC/30 min/10 ºC/min and characterized according to their chemical, structural, mechanical, and thermal properties. The results (porosities between 78 and 86% with thermal conductivities between 0.072 and 0.093 W/mK and compressive mechanical strength between 0.2 and 3.4 MPa) indicated that the obtained foams produced from low-cost starting materials have potential for being used in applications where thermal insulation and non-flammability are the main technical requirements.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Scheffler, M., Colombo, P.: Cellular Ceramics: Structure. Properties and Applications., Wiley-VCH, Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim, Germany, Manufacturing (2005)

    Book  Google Scholar 

  2. Caniato, M., Kyaw, G., D’Amore, J., Kaspar, A.G.: Sound absorption performance of sustainable foam materials: Application of analytical and numerical tools for the optimization of forecasting models. Appl Acoust (2020). https://doi.org/10.1016/j.apacoust.2019.107166

    Article  Google Scholar 

  3. Chen, Q.Z., Thompson, I.D., Boccaccini, A.R.: 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414–2425 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  Google Scholar 

  4. Midha, S., Kim, T.B., van den Bergh, W., Lee, P.D., Jones, J.R., Mitchell, C.A.: Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater. 9, 9169–9182 (2013). https://doi.org/10.1016/j.actbio.2013.07.014

    Article  Google Scholar 

  5. Kyaw D’Amore, G., Caniato, M., Travan, A., Turco, G., Marsich, L., Ferluga, A., Schmid, C.: Innovative thermal and acoustic insulation foam from recycled waste glass powder. J. Clean. Prod. (2017). https://doi.org/10.1016/j.jclepro

    Article  Google Scholar 

  6. M.F. Ashby, Chapter 3 - The material life cycle, in: M.F.B.T.-M. and the E. (Second E. Ashby (Ed.), Butterworth-Heinemann, Boston, 2013.

  7. M.F. Ashby, Chapter 4 - End of first life: A problem or a resource?, in: M.F.B.T.-M. and the E. (Second E. Ashby (Ed.), Butterworth-Heinemann, Boston, 2013: pp. 79–97. https://doi.org/10.1016/B978-0-12-385971-6.00004-X.

  8. Gaines, L.L., Mintz, M.M.: Energy implications of glass-container recycling, Golden. CO (United States) (1994). https://doi.org/10.2172/10161731

    Article  Google Scholar 

  9. Bernardo, E., Scarinci, G., Bertuzzi, P., Ercole, P., Ramon, L.: Recycling of waste glasses into partially crystallized glass foams. J. Porous Mater. 17, 359–365 (2010). https://doi.org/10.1007/s10934-009-9286-3

    Article  Google Scholar 

  10. de Moraes, E.G., Bigi, M., Stochero, N.P., Arcaro, S., Siligardi, C., Novaes de Oliveira, A.P.: Vitrocrystalline foams produced with EPS as pore former: Processing and characterization. Process Saf. Environ. Prot. 121, 12–19 (2019). https://doi.org/10.1016/j.psep.2018.10.007

    Article  Google Scholar 

  11. Souza, M.T., Maia, B.G.O., Teixeira, L.B., de Oliveira, K.G., Teixeira, A.H.B., Novaes de Oliveira, A.P.: Glass foams produced from glass bottles and eggshell wastes. Process Saf. Environ. Prot. 111, 60–64 (2017). https://doi.org/10.1016/j.psep.2017.06.011

    Article  Google Scholar 

  12. Paiva, A.L., de Moraes, E.G., Stochero, N.P., de Oliveira, A.P.N.: Characterization of Vitrocrystalline Foams Produced from Discarded Glasses and Recycled Polystyrene Spheres. Mater. Res. 20, 472–478 (2017). https://doi.org/10.1590/1980-5373-mr-2016-1089

    Article  Google Scholar 

  13. Tulyaganov, D.U., Fernandes, H.R., Agathopoulos, S., Ferreira, J.M.F.: Preparation and characterization of high compressive strength foams from sheet glass. J. Porous Mater. 13, 133–139 (2006). https://doi.org/10.1007/s10934-006-7014-9

    Article  Google Scholar 

  14. Fernandes, H.R., Tulyaganov, D.U., Ferreira, J.M.F.: Preparation and characterization of foams from sheet glass and fly ash using carbonates as foaming agents. Ceram. Int. 35, 229–235 (2009). https://doi.org/10.1016/j.ceramint.2007.10.019

    Article  Google Scholar 

  15. Lebullenger, R., Chenu, S., Rocherullé, J., Merdrignac-Conanec, O., Cheviré, F., Tessier, F., Bouzaza, A., Brosillon, S.: Glass foams for environmental applications. J. Non. Cryst. Solids. 356, 2562–2568 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.04.050

    Article  Google Scholar 

  16. Bernardo, E., Albertini, F.: Glass foams from dismantled cathode ray tubes. Ceram. Int. 32, 603–608 (2006). https://doi.org/10.1016/j.ceramint.2005.04.019

    Article  Google Scholar 

  17. Mear, F., Yot, P., Cambon, M., Caplain, R., Ribes, M.: Characterisation of porous glasses prepared from Cathode Ray Tube (CRT). Powder Technol. 162, 59–63 (2006). https://doi.org/10.1016/j.powtec.2005.12.003

    Article  Google Scholar 

  18. Rincón, A., Giacomello, G., Pasetto, M., Bernardo, E.: Novel ‘inorganic gel casting’ process for the manufacturing of glass foams. J. Eur. Ceram. Soc. 37, 2227–2234 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.01.012

    Article  Google Scholar 

  19. Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing Routes to Macroporous Ceramics: A Review. J. Am. Ceram. Soc. 89, 1771–1789 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x

    Article  Google Scholar 

  20. Romano, R.C.O., Pandolfelli, V.C.: Obtenção e propriedades de cerâmicas porosas pela técnica de incorporação de espuma. Cerâmica. 52, 213–219 (2006). https://doi.org/10.1590/S0366-69132006000200015

    Article  Google Scholar 

  21. Bernardo, E., Cedro, R., Florean, M., Hreglich, S.: Reutilization and stabilization of wastes by the production of glass foams. Ceram. Int. 33, 963–968 (2007). https://doi.org/10.1016/j.ceramint.2006.02.010

    Article  Google Scholar 

  22. M.. Tasserie, Y.. Bideau, P.. LAurent, A. Verdier, A new expanded material: optimization of the fabrication process., J. High Temp. Chem. Process. 1 (1992) 241–250.

  23. Tasserie, M., Bideau, D., Rocherulle, J., Verdier, P.: Laurent, New expanded material based on industrial glass. I Effect of the quality of powders and their mixing on properties of the material. Verre. 6, 9–15 (1992)

    Google Scholar 

  24. Bernardo, E.: Micro- and macro-cellular sintered glass-ceramics from wastes. J. Eur. Ceram. Soc. 27, 2415–2422 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.10.003

    Article  Google Scholar 

  25. Llaudis, A.S., Tari, M.J.O., Ten, F.J.G., Bernardo, E., Colombo, P.: Foaming of flat glass cullet using Si3N4 and MnO2 powders. Ceram. Int. 35, 1953–1959 (2009). https://doi.org/10.1016/j.ceramint.2008.10.022

    Article  Google Scholar 

  26. Tasserie, M., Bideau, D., Verdier, P.: Y. Laurent, New expanded material based on industrial glass II. Role and effect of the amount of an expansive additive on the characteristics of the material, Verre 6, 103–107 (1992)

    Google Scholar 

  27. Mugoni, C., Montorsi, M., Siligardi, C., Andreola, F., Lancellotti, I., Bernardo, E., Barbieri, L.: Design of glass foams with low environmental impact. Ceram. Int. 41, 3400–3408 (2015). https://doi.org/10.1016/j.ceramint.2014.10.127

    Article  Google Scholar 

  28. Arcaro, S., deOMaia, B.G., Souza, M.T.M.T., Cesconeto, F.R.F.R., Granados, L., deOliveira, A.P.N., DeOliveiraMaia, B.G., Souza, M.T.M.T., Cesconeto, F.R.F.R., Granados, L., DeOliveira, A.P.N.: Thermal Insulating Foams Produced From Glass Waste and Banana Leaves. Mater. Res. 19, 1064–1069 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0539

    Article  Google Scholar 

  29. de Moraes, E.G., Sangiacomo, L., Stochero, N.P., Arcaro, S., Barbosa, L.R., Lenzi, A., Siligardi, C., Novaes de Oliveira, A.P.: Innovative thermal and acoustic insulation foam by using recycled ceramic shell and expandable styrofoam (EPS) wastes. Waste Manag. 89, 336–344 (2019). https://doi.org/10.1016/j.wasman.2019.04.019

    Article  Google Scholar 

  30. Teixeira, L.B., deOMaia, B.G., Arcaro, S., Sellin, N., de Oliveira, A.P.N.: Produção e caracterização de espumas vitrocristalinas a partir de resíduos sólidos. Matéria (Rio Janeiro) (2017). https://doi.org/10.1590/s1517-707620170004.0218

    Article  Google Scholar 

  31. Teixeira, L.B., Fernandes, V.K., Maia, B.G.O., Arcaro, S., de Oliveira, A.P.N.: Vitrocrystalline foams produced from glass and oyster shell wastes. Ceram. Int. 43, 6730–6737 (2017). https://doi.org/10.1016/j.ceramint.2017.02.078

    Article  Google Scholar 

  32. da Silva, L.L., Ribeiro, L.C.N., Santacruz, G., Arcaro, S., Alves, A.K., Bergmann, C.P.: Glass foams produced from glass and yerba mate (Ilex paraguarinensis) waste. FME Trans. 46, 70–79 (2018). https://doi.org/10.5937/fmet1801070L

    Article  Google Scholar 

  33. Carvalho, P.E.R.: Espécies florestais brasileiras: recomendações silviculturais, potencialidades e uso da madeira. Embrapa/SPI, Brasília, DF (1994)

    Google Scholar 

  34. F. a. Santos, Uso das escamas da pinha da Araucaria angustifolia para biosorção de metais pesados de efluente industrial de galvanoplastia, Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil, 2007.

  35. Vogel, H.: Viscosity of liquids. Phys. Z. 22, 645–646 (1921)

    Google Scholar 

  36. ASTM E112:12. Standard Test Methods for Determining Average Grain Size, West Conshohocken, PA, 2012.

  37. ASTM D3576:98. Standard Test Method for Cell Size of Rigid Cellular Plastics, West Conshohocken, PA, 2015.

  38. Colombo, P.: Conventional and novel processing methods for cellular ceramics. Trans. R. Soc. A Math. Phys. Eng. Sci Philos (2006). https://doi.org/10.1098/rsta.2005.1683

    Article  Google Scholar 

  39. Kim, H.S., Kim, S., Kim, H.J., Yang, H.S.: Thermal properties of bio-flour-filled polyolefin composites with different compatibilizing agent type and content. Thermochim. Acta. 451, 181–188 (2006)

    Article  Google Scholar 

  40. F.A. dos Santos, Uso das escamas da pinha da araucaria angustifolia para biosorção de metais pesados de efluente industrial de galvanoplastia. Dissertação (Mestrado Engenharia e Tecnologia de Materiais), Universidade Católica do Rio Grande do Sul, Porto Alegre, 2007.

  41. D.R. Mulinari, G. Luís, J.P. Silva, L. Caetano, P. Silva, D.D.E. Química, F. De Engenharia, Q. De Lorena, L. Sp, Adsorção de íons dicromato nos compósitos celulose/ZrO2 .nH2 o preparados pelos métodos da precipitação convencional e em solução homogênea, 29 (2006) 496–500.

  42. L.B. Teixeira, B. Goulart, D.O. Maia, S. Arcaro, N. Sellin, A. Pedro, N. De Oliveira, Produção e caracterização de espumas vitrocristalinas a partir de resíduos sólidos Production and characterization of vitrocrystalline foams from solid wastes, (2017).

  43. Petersen, R.R., König, J., Yue, Y.: The viscosity window of the silicate glass foam production. J. Non. Cryst. Solids. 456, 49–54 (2017). https://doi.org/10.1016/j.jnoncrysol.2016.10.041

    Article  Google Scholar 

  44. Collishaw, P.G., Evans, J.R.G.: An assessment of expressions for the apparent thermal conductivity of cellular materials. J. Mater. Sci. 29, 486–498 (1994). https://doi.org/10.1007/BF01162512

    Article  Google Scholar 

  45. Wang, Q., Li, Y., Li, S., Xiang, R., Xu, N., OuYang, S.: Effects of critical particle size on properties and microstructure of porous purging materials. Mater. Lett. 197, 48–51 (2017). https://doi.org/10.1016/j.matlet.2017.03.129

    Article  Google Scholar 

  46. Vakifahmetoglu, C., Semerci, T., Soraru, G.D.: Closed porosity ceramics and glasses. J. Am. Ceram. Soc. 103, 2941–2969 (2020). https://doi.org/10.1111/jace.16934

    Article  Google Scholar 

  47. König, J., Petersen, R.R., Yue, Y.: Influence of the glass particle size on the foaming process and physical characteristics of foam glasses. J. Non. Cryst. Solids. 447, 190–197 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.05.021

    Article  Google Scholar 

  48. König, J., Petersen, R.R., Yue, Y.: Influence of the glass–calcium carbonate mixture’s characteristics on the foaming process and the properties of the foam glass. J. Eur. Ceram. Soc. 34, 1591–1598 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.020

    Article  Google Scholar 

  49. Ducman, V., Kovačević, M.: The Foaming of Waste Glass. Key Eng. Mater. 132–136, 2264–2267 (1997). https://doi.org/10.4028/www.scientific.net/KEM.132-136.2264

    Article  Google Scholar 

  50. Méar, F., Yot, P., Cambon, M., Ribes, M.: The characterization of waste cathode-ray tube glass. Waste Manag. 26, 1468–1476 (2006). https://doi.org/10.1016/j.wasman.2005.11.017

    Article  Google Scholar 

  51. P.A.M. dos Santos, A.V. Priebbnow, S. Arcaro, R.M. da Silva, D.A.R. Lopez, A.D.A.L. Rodriguez, Sustainable Glass Foams Produced from Glass Bottles and Tobacco Residue, Mater. Res. 22 (2018). doi:10.1590/1980–5373-mr-2018–0452.

  52. Zhu, M., Ji, R., Li, Z., Wang, H., Liu, L.L., Zhang, Z.: Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass. Constr. Build. Mater. 112, 398–405 (2016). https://doi.org/10.1016/j.conbuildmat.2016.02.183

    Article  Google Scholar 

  53. Zilli, M., Arcaro, S., Cesconeto, F.R., De Oliveira Maia, B.G., Pereira, F.R., Novaes De Oliveira, A.P.: Production and characterisation of ceramic foams from industrial solid waste. Eng. Trans Chem (2015). https://doi.org/10.3303/CET1543298

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES) of Brazilian institutions, the National Council for Scientific and Technological Development (CNPq) for financing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Stochero.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stochero, N.P., de Souza Chami, J.O.R., Souza, M.T. et al. Green Glass Foams from Wastes Designed for Thermal Insulation. Waste Biomass Valor 12, 1609–1620 (2021). https://doi.org/10.1007/s12649-020-01120-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01120-3

Keywords

Navigation