Fermented Cassava Residue Lignin Prepared by Sequential Acid Steam-Explosion and Hot-Alkaline Treatment and Its Antioxidant Properties


Fermented cassava residue (FCR) is a solid waste generated in cassava-based ethanol production that constitutes a major environmental challenge and wastes a natural resource. In the present study, a process involving sequential acid steam-explosion and hot-alkaline treatment was developed to prepare an antioxidant lignin in high yield and purity from FCR. Two-dimensional NMR analysis indicates that FCR lignin belongs to a guaiacyl/syringyl/hydroxyphenyl (G/S/H) class of lignin. 31P NMR analysis, after hydroxyl group phosphorylation, indicates that phenolic hydroxyl in FCR lignin attributable to mostly G-OH. One FCR lignin (No. 3) possessed the antioxidant activity similar to that of butylated hydroxytoluene. This FCR lignin may have potential applications as a food antioxidant or in other industrial processes as an antioxidant.

Graphic Abstract

The present study provided an efficient process of sequent acid steam-explosion and hot-alkaline treatment to improve the added value of fermented cassava residue (FCR).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3.


  1. 1.

    Barclay, L.R.C., Xi, F., Norris, J.Q.: Antioxidant properties of phenolic lignin model compounds. J. Wood Chem. Technol. 17, 73–90 (1997)

    Article  Google Scholar 

  2. 2.

    Lu, F., Chu, L.H., Gau, R.J.: Free radical-scavenging properties of lignin. Nutr. Cancer. 30, 31–38 (1998)

    Article  Google Scholar 

  3. 3.

    Dizhbite, T., Telysheva, G., Jurkjane, V., Viesturs, U.: Characterization of the radical scavenging activity of lignins—natural antioxidants. Bioresour. Technol. 95, 309–317 (2004)

    Article  Google Scholar 

  4. 4.

    Catignani, G.L., Carter, M.E.: Antioxidant properties of lignin. J. Food Sci. 47, 1745–1748 (1982)

    Article  Google Scholar 

  5. 5.

    Ugartondo, V., Mitjans, M., Vinardell, M.P.: Comparative antioxidant and cytotoxic effects of lignins from different sources. Bioresour. Technol. 99, 6683–6687 (2008)

    Article  Google Scholar 

  6. 6.

    Ayyachamy, M., Cliffe, F.E., Coyne, J.M., Collier, J., Tuohy, M.G.: Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers. Bioref. 3, 255–269 (2013)

    Article  Google Scholar 

  7. 7.

    De, P.M.A., Furlan, L.T.: Sugar cane bagasse-lignin as photo-stabilizer for butadiene rubber. Polym. Degrad. Stabil. 11, 327–337 (1985)

    Article  Google Scholar 

  8. 8.

    Gregorova, A., Cibulkova, Z., Kosikova, B., Simon, P.: Stabilization effect of lignin in polypropylene and recycled polypropylene. Polym. Degrad. Stabil. 89, 553–558 (2005)

    Article  Google Scholar 

  9. 9.

    Ayyachamy, M., Cliffe, F.E., Coyne, J.M., Collier, J., Tuohy, M.G.: Lignin: untapped biopolymers in biomass conversion technologies. Biomass Convers. Biorg. 3, 255–269 (2013)

    Article  Google Scholar 

  10. 10.

    Dong, X., Dong, M., Lu, Y., Turley, A., Jin, T., Wu, C.: Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind. Crop. Prod. 34, 1629–1634 (2011)

    Article  Google Scholar 

  11. 11.

    Shanavas, G., Padmaja, G., Moorthy, S.N., Sajeev, M.S., Sheriff, J.T.: Process optimization for bioethanol production from cassava starch using novel eco-friendly enzymes. Biomass Bioenergy 35, 901–909 (2011)

    Article  Google Scholar 

  12. 12.

    Qin, J.G., Chen, D.J.: Several comprehensive utilization methods of fermented cassava residue. China Bioresour. Compr. Utilation 30, 41–43 (2012). (In Chinese)

    Google Scholar 

  13. 13.

    Li, H.X., Zhang, R.J., Tang, L., Zhang, J.H., Mao, Z.G.: Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Biomass Bioenergy 23, 227–233 (2015)

    Google Scholar 

  14. 14.

    Ray, R.C., Mohapatra, S., Panda, S., Kar, S.: Solid substrate fermentation of cassava fibrous residue for production of α-amylase, lactic acid and ethanol. J. Environ. Biol. 29, 111–115 (2008)

    Google Scholar 

  15. 15.

    Amin, M., Flowers, T.H.: Evaluation of Kjeldahl digestion method. J. Res. 15, 159–179 (2004)

    Google Scholar 

  16. 16.

    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of structural carbohydrates and lignin in biomass. https://www.nrel.gov/biomass/pdfs/42618.pdf.

  17. 17.

    Zhang, H.J., Fan, X.G., Qiu, X.L., Zhang, Q.X., Wang, W.Y., Li, S.X., Deng, L.H., Koffas, M., Wei, D.S., Yuan, Q.P.: A novel cleaning process for industrial production of xylose in pilot scale from corncob by using screw-steam-explosive extruder. Bioprocess Biosyst. Eng. 37, 2425–2436 (2014)

    Article  Google Scholar 

  18. 18.

    Zoulikha, M.R., Thierry, M., Qiuyu, Z.J.M., Nouviaire, A., Sid-Ahmed, R.: Combined steam-explosion toward vacuum and dilute-acid spraying of wheat straw. Impact of severity factor on enzymatic hydrolysis. Renew. Energy 78, 516–526 (2015)

    Article  Google Scholar 

  19. 19.

    Chum, H.L., Johnson, D.K., Black, S.K., Overend, R.P.: Pretreatment-catalyst effects and the combined severity parameter. Appl. Biochem. Biotech. 24, 1–13 (1990)

    Article  Google Scholar 

  20. 20.

    Faix, O., Argyropoulos, D.S., Robert, D., Neirinck, V.: Determination of hydroxyl groups in lignins evaluation of 1H-, 13C-, 31P-NMR FTIR and wet chemical methods. Holzforschung 48, 387–394 (1994)

    Article  Google Scholar 

  21. 21.

    Wen, J.L., Sun, S.L., Xue, B.L., Sun, R.C.: Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens). Holzforschung 67, 613–627 (2013)

    Article  Google Scholar 

  22. 22.

    Azadfar, M., Gao, A.H., Mahesh, V.B., Chen, S.L.: Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. Int. J. Biol. Macromol. 75, 58–66 (2015)

    Article  Google Scholar 

  23. 23.

    Roberta, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  Google Scholar 

  24. 24.

    Li, P.Y., Lu, R.M., Su, W., Wu, M.Y., Peng, M.P., Liu, L.Q.: Detection of antioxidative capacity of Dioscorea futschauensis extract by ABTS assay. Hubei Agric. Sci. 55, 3173–3175 (2016). (In Chinese)

    Google Scholar 

  25. 25.

    Ouyang, X.H., Wang, W.Y., Yuan, Q.P., Li, S.X., Zhang, Q.X., Zhao, P.X.: Improvement of lignin yield and purity from corncob in the presence of steam explosion and liquid hot pressured alcohol. RSC Adv. 5, 61650–61656 (2015)

    Article  Google Scholar 

  26. 26.

    Wang, S.J., Ouyang, X.H., Wang, W.Y., Yuan, Q.P., Yan, A.X.: Comparison of ultrasound-assisted Fenton reaction and dilute acid-catalysed steam explosion pretreatment of corncobs: cellulose characteristics and enzymatic saccharification. RSC Adv. 6, 6848–76854 (2016)

    Google Scholar 

  27. 27.

    Sun, S.L., Wen, J.L., Ma, M.G., Sun, R.C., Jones, G.L.: Structural features and antioxidant activities of degraded lignins from steam exploded bamboo stem. Ind. Crop Prod. 56, 128–136 (2014)

    Article  Google Scholar 

  28. 28.

    Li, J.B., Gellerstedt, G., Toven, K.: Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour. Technol. 100, 2556–2561 (2009)

    Article  Google Scholar 

  29. 29.

    Shuai, L., Saha, B.: Towards high-yield lignin monomer production. Green Chem. 19, 3752–3758 (2017)

    Article  Google Scholar 

  30. 30.

    Gilarranz, M.A., Rodriguez, F., Oliet, M.: Lignin behavior during the autocatalyzed methanol pulping of Eucalyptus globulus changes in molecular weight and functionality. Holzforschung 54, 373–380 (2000)

    Article  Google Scholar 

  31. 31.

    Pan, X.J., Kadla, J.F., Ehara, K., Gilkes, N., Saddler, J.N.: Organosolv ethanol lignin from hybrid poplar as a radical scavenger: relationship between lignin structure, extraction conditions, and antioxidant activity. J. Agric. Food Chem. 54, 5806–5813 (2006)

    Article  Google Scholar 

  32. 32.

    Yasuda, S., Fukushima, K., Kakehi, A.: Formation and chemical structures of acid-soluble lignin I: sulfuric acid treatment time and acid-soluble lignin content of hardwood. J. Wood Sci. 47, 69–72 (2001)

    Article  Google Scholar 

  33. 33.

    Froass, P.M., Ragauskas, A.J.: Chemical structure of residual lignin from kraft pulp. J. Wood Chem. Technol. 16, 347–365 (1996)

    Article  Google Scholar 

  34. 34.

    Shen, D.K.: The pyrolytic mechanism of the main components in woody biomass and their interactions. Bioresour. Technol. 101, 6136–6146 (2010)

    Article  Google Scholar 

  35. 35.

    Umezawa, T., Higuchi, T.: A novel Cα-Cβ cleavage of a β-O-4 lignin model dimer with rearrangement of the β-aryl group by Phanerochaete chrysosporium. FEBS Lett. 192, 147–150 (1985)

    Article  Google Scholar 

  36. 36.

    Besombes, S., Utille, J.P., Mazeau, K., Robert, D., Taravel, F.R.: Conformational study of a guaiacyl β-O-4 lignin model compound by NMR. Examination of intramolecular hydrogen bonding interactions and conformational flexibility in solution. Magn. Reson. Chem. 42, 337–347 (2004)

    Article  Google Scholar 

  37. 37.

    Balakshin, M., Capanema, E., Gracz, H., Chang, H.M., Jameel, H.: Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233, 1097–1110 (2011)

    Article  Google Scholar 

  38. 38.

    Li, M.F., Sun, S.N., Xu, F., Sun, R.C.: Microwave-assisted organic acid extraction of lignin from bamboo: structure and antioxidant activity investigation. Food Chem. 134, 1392–1398 (2012)

    Article  Google Scholar 

Download references


This work was supported by the National Key Research and Development Program of China (No. 2016YFD0400601), State Key Laboratory of Pulp and Paper Engineering (201760), Natural Science Foundation of China (NSFC 21576153).

Author information



Corresponding author

Correspondence to Wenya Wang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 373 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, S., Pan, Y. et al. Fermented Cassava Residue Lignin Prepared by Sequential Acid Steam-Explosion and Hot-Alkaline Treatment and Its Antioxidant Properties. Waste Biomass Valor 11, 6115–6124 (2020). https://doi.org/10.1007/s12649-019-00862-z

Download citation


  • Fermented cassava residue
  • Lignin
  • Steam-explosion
  • Antioxidant activity