Skip to main content
Log in

Effect of Sodium Hydroxide Pretreatment on Lignin Monomeric Components of Miscanthus × giganteus and Enzymatic Hydrolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of this research was to study the influence of delignification, caused by NaOH, on lignin chemistry. Miscanthus × giganteus samples were pretreated with various concentrations of sodium hydroxide (0.5, 1.0, and 2.0%, w/v) at different pretreatment times (15, 30, and 60 min) in batch systems. Results indicated that NaOH had a significant effect on lignin removal with delignification ranging from 42.3 to 84.6% depending on the severity of pretreatment. Nitrobenzene oxidation was used to investigate changes in lignin chemistry of pretreated M. giganteus by analyzing syringyl to guaiacyl ratio (S/G ratio) and p-hydroxyphenyl to guaiacyl ratio (H/G ratio). The S/G ratio of pretreated Miscanthus increased from 0.64unpretreated sample to 0.77 while the H/G ratio decreased from 0.48unpretreated sample to 0.28 at 0.5% NaOH pretreatment suggesting that H unit of lignin was most susceptible to NaOH pretreatment. The data also suggested that NaOH concentration was a critical factor in changing lignin chemistry of pretreated Miscanthus. A better understanding of the correlation between pretreatment severities, changes in lignin chemistry, and enzymatic hydrolysis efficiency subsequent to pretreatment of herbaceous grasses warrant further investigations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wyman, C.E.: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25(4), 153–157 (2007)

    Google Scholar 

  2. Somerville, C., Youngs, H., Taylor, C., Davis, S.C., Long, S.P.: Feedstocks for lignocellulosic biofuels. Science 329(5993), 790–792 (2010)

    Google Scholar 

  3. Yeh, R., Lin, Y., Wang, T., Kuan, W., Lee, W.: Bioethanol production from pretreated Miscanthus floridulus biomass by simultaneous saccharification and fermentation. Biomass Bioenergy 94, 110–116 (2016)

    Google Scholar 

  4. Zhuang, Q., Qin, Z., Chen, M.: Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett. 8, 015020 (2013)

    Google Scholar 

  5. Brosse, N., Dufour, A., Meng, X., Sun, Q., Ragauskas, A.: Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod. Biorefin. 6, 580–598 (2012)

    Google Scholar 

  6. Si, S., Chen, Y., Fan, C., Hu, H., Li, Y., Huang, J., Liao, H., Hao, B., Li, Q., Peng, L.: Lignin extraction distinctively enhances biomass enzymatic saccharification in hemicelluloses-rich Miscanthus species under various alkali and acid pretreatments. Bioresour. Technol. 183, 248–254 (2015)

    Google Scholar 

  7. Constant, S., Wienk, H.L., Frissen, A.E., de Peinder, P., Boelens, R., Van Es, D.S., Grisel, R.J., Weckhuysen, B.M., Huijgen, W.J., Gosselink, R.J.: New insights into the structure and composition of technical lignins: a comparative characterisation study. Green Chem. 18, 2651–2665 (2016)

    Google Scholar 

  8. Bauer, S., Sorek, H., Mitchell, V.D., Ibáñez, A.B., Wemmer, D.E.: Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. J. Agric. Food Chem. 60(33), 8203–8212 (2012)

    Google Scholar 

  9. dos Santos, A.C., Ximenes, E., Kim, Y., Ladisch, M.R.: Lignin–enzyme interactions in the hydrolysis of lignocellulosic biomass. Trends Biotechnol. 37(5), 518–531 (2019)

    Google Scholar 

  10. Li, X., Zheng, Y.: Lignin–enzyme interaction: mechanism, mitigation approach, modeling, and research prospects. Biotechnol. Adv. 35(4), 466–489 (2017)

    Google Scholar 

  11. Kumar, A.K., Sharma, S.: Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4(1), 7 (2017)

    Google Scholar 

  12. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016)

    Google Scholar 

  13. Li, M., Si, S., Hao, B., Zha, Y., Wan, C., Hong, S., Kang, Y., Jia, J., Zhang, J., Li, M.: Mild alkali-pretreatment effectively extracts guaiacyl-rich lignin for high lignocellulose digestibility coupled with largely diminishing yeast fermentation inhibitors in Miscanthus. Bioresour. Technol. 169, 447–454 (2014)

    Google Scholar 

  14. Zhao, X., Zhang, L., Liu, D.: Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod. Biorefin. 6, 561–579 (2012)

    Google Scholar 

  15. Xu, J.K., Sun, R.C.: Recent advances in alkaline pretreatment of lignocellulosic biomass. In: Mossatto, S.I. (ed.) Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, pp. 431–459. Elsevier, Amsterdam (2016)

    Google Scholar 

  16. Harmsen, P.F.H., Huijgen, W., Bermudez, L., Bakker, R.: Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass. Wageningen, Wageningen UR Food and Biobased Research (2010). ISBN 978-90-8585-757-0

    Google Scholar 

  17. Xu, J., Chen, Y., Cheng, J.J., Sharma-Shivappa, R., Burns, J.: Delignification of switchgrass cultivars for bioethanol production. BioResources 6(1), 707–720 (2011)

    Google Scholar 

  18. Haque, M.A., Barman, D.N., Kang, T.H., Kim, M.K., Kim, J., Kim, H., Yun, H.D.: Effect of dilute alkali pretreatment on structural features and enhanced enzymatic hydrolysis of Miscanthus sinensis at boiling temperature with low residence time. Biosyst. Eng. 114(3), 294–305 (2013)

    Google Scholar 

  19. Li, M., Foster, C., Kelkar, S., Pu, Y., Holmes, D., Ragauskas, A., Saffron, C.M., Hodge, D.B.: Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes. Biotechnol. Biofuels 5(1), 38 (2012)

    Google Scholar 

  20. Timilsena, Y.P., Abeywickrama, C.J., Rakshit, S.K., Brosse, N.: Effect of different pretreatments on delignification pattern and enzymatic hydrolysability of Miscanthus, oil palm biomass and Typha grass. Bioresour. Technol. 135, 82–88 (2013). https://doi.org/10.1016/j.biortech.2012.09.010

    Article  Google Scholar 

  21. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Extractives in Biomass Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden (2005)

    Google Scholar 

  22. Adney, B., Baker, J.: Measurement of Cellulase Activities. Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden (1996)

    Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of Ash in Biomass Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden (2008)

    Google Scholar 

  24. Sluiter, A., Hames, B., Hyman, D., Payne, C., Ruiz, R., Scarlata, C., Sluiter, J,, Templeton, D., Wolfe, J.: Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples. NREL Technical Report No. NREL/TP-510–42621. National Renewable Energy Laboratory, Golden (2008)

  25. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Lab. Anal. Proced. 1617, 1–16 (2008)

    Google Scholar 

  26. Jung, W., Savithri, D., Sharma-Shivappa, R., Kolar, P.: Changes in lignin chemistry of switchgrass due to delignification by sodium hydroxide pretreatment. Energies 11, 1–12 (2018)

    Google Scholar 

  27. Kajita, S., Katayama, Y., Omori, S.: Alterations in the biosynthesis of lignin in transgenic plants with chimeric genes for 4-coumarate: coenzyme A ligase. Plant Cell Physiol. 37(7), 957–965 (1996)

    Google Scholar 

  28. Lima, C.F., Barbosa, L.C.A., Marcelo, C.R., Silvério, F.O., Colodette, J.L.: Comparison between analytical pyrolysis and nitrobenzene oxidation for determination of syringyl/guaiacyl ratio in Eucalyptus spp. lignin. Bioresources 3(3), 701–712 (2008)

    Google Scholar 

  29. Hage, R., Chrusciel, L., Desharnais, L., Brosse, B.: Effect of autohydrolysis of Miscanthus × giganteus on lignin structure and organosolv delignification. Bioresour. Technol. 101(23), 9321–9329 (2010)

    Google Scholar 

  30. Bauer, S., Sorek, H., Mitchell, V.D., Ibáñez, A.B., Wemmer, D.E.: Characterization of Miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. J. Agric. Food Chem. 60, 8203–8212 (2012)

    Google Scholar 

  31. Yamamura, M., Noda, S., Hattori, T., Shino, A., Kikuchi, J., Takabe, K., Tagane, S., Gau, M., Uwatoko, N., Mii, M.: Characterization of lignocellulose of Erianthus arundinaceus in relation to enzymatic saccharification efficiency. Plant Biotechnol. 30, 25–35 (2013)

    Google Scholar 

  32. Belmokhtar, N., Habrant, A., Ferreira, N.L., Chabbert, B.: Changes in phenolics distribution after chemical pretreatment and enzymatic conversion of Miscanthus × giganteus internode. Bioenergy Res. 6(2), 506–518 (2013)

    Google Scholar 

  33. Schultz, T.P., Templeton, M.C.: Proposed mechanism for the nitrobenzene oxidation of lignin. Holzforsch. Int. J. Biol. Chem. Phys. Technol. Wood 40, 93–97 (1986)

    Google Scholar 

  34. Yan, Z., Li, J., Chang, S., Cui, T., Jiang, Y., Yu, M., Zhang, L., Zhao, G., Qi, P., Li, S.: Lignin relocation contributed to the alkaline pretreatment efficiency of sweet sorghum bagasse. Fuel 158, 152–158 (2015)

    Google Scholar 

  35. Laskar, D.D., Zeng, J., Yan, L., Chen, S., Yang, B.: Characterization of lignin derived from water-only flowthrough pretreatment of Miscanthus. Ind. Crops Prod. 50, 391–399 (2013)

    Google Scholar 

  36. Liu, Z., Padmanabhan, S., Cheng, K., Schwyter, P., Pauly, M., Bell, A.T., Prausnitz, J.M.: Aqueous-ammonia delignification of Miscanthus followed by enzymatic hydrolysis to sugars. Bioresour. Technol. 135, 23–29 (2013)

    Google Scholar 

  37. Liu, Z., Padmanabhan, S., Cheng, K., Xie, H., Gokhale, A., Afzal, W., Na, H., Pauly, M., Bell, A.T., Prausnitz, J.M.: Two-step delignification of Miscanthus to enhance enzymatic hydrolysis: aqueous ammonia followed by sodium hydroxide and oxidants. Energy Fuels 28(1), 542–548 (2014)

    Google Scholar 

  38. Santos, R.B., Hart, P., Jameel, H., Chang, H.: Wood based lignin reactions important to the biorefinery and pulp and paper industries. BioResources 8(1), 1456–1477 (2013)

    Google Scholar 

  39. Ziebell, A., Gracom, K., Katahira, R., Chen, F., Pu, Y., Ragauskas, A., Dixon, R.A., Davis, M.: Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J. Biol. Chem. 285(50), 38961–38968 (2010)

    Google Scholar 

  40. Russell, W.R., Forrester, A.R., Chesson, A., Burkitt, M.J.: Oxidative coupling during lignin polymerization is determined by unpaired electron delocalization within parent phenylpropanoid radicals. Arch. Biochem. Biophys. 332(2), 357–366 (1996)

    Google Scholar 

  41. Pu, Y., Chen, F., Ziebell, A., Davison, B.H., Ragauskas, A.J.: NMR characterization of C3H and HCT down-regulated alfalfa lignin. Bioenergy Res. 2, 198–208 (2009)

    Google Scholar 

  42. Russell, W.R., Burkitt, M.J., Scobbie, L., Chesson, A.: EPR investigation into the effects of substrate structure on peroxidase-catalyzed phenylpropanoid oxidation. Biomacromolecules 7(1), 268–273 (2006)

    Google Scholar 

  43. Zahoor, Tu Y, Wang, L., Xia, T., Sun, D., Zhou, S., Wang, Y., Li, Y., Zhang, H., Zhang, T., Madadi, M., Peng, L.: Mild chemical pretreatments are sufficient for complete saccharification of steam-exploded residues and high ethanol production in desirable wheat accessions. Bioresour. Technol. 243, 319–326 (2017). https://doi.org/10.1016/j.biortech.2017.06.111

    Article  Google Scholar 

  44. Wu, Z., Zhang, M., Wang, L., Tu, Y., Zhang, J., Xie, G., Zou, W., Li, F., Guo, K., Li, Q.: Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants. Biotechnol. Biofuels 6, 183 (2013)

    Google Scholar 

  45. Lima, C.F., Barbosa, L., Silva, M.N., Colodette, J.L., Silvério, F.O.: In situ determination of the syringyl/guaiacyl ratio of residual lignin in pre-bleached eucalypt kraft pulps by analytical pyrolysis. J. Anal. Appl. Pyrolysis 112, 164–172 (2015)

    Google Scholar 

  46. Ohra-aho, T., Gomes, F., Colodette, J.L., Tamminen, T.: S/G ratio and lignin structure among Eucalyptus hybrids determined by Py-GC/MS and nitrobenzene oxidation. J. Anal. Appl. Pyrolysis 101, 166–171 (2013)

    Google Scholar 

  47. Yu, Z., Gwak, K., Treasure, T., Jameel, H., Chang, H., Park, S.: Effect of lignin chemistry on the enzymatic hydrolysis of woody biomass. ChemSusChem 7, 1942–1950 (2014)

    Google Scholar 

  48. Li, Z., Zhao, C., Zha, Y., Wan, C., Si, S., Liu, F., Zhang, R., Li, F., Yu, B., Yi, Z., Peng, L., Li, Q.: The minor wall-networks between monolignols and interlinked-phenolics predominantly affect biomass enzymatic digestibility in Miscanthus. PLoS ONE 9(8), 105115 (2014)

    Google Scholar 

  49. Öhgren, K., Bura, R., Saddler, J., Zacchi, G.: Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98(13), 2503–2510 (2007)

    Google Scholar 

  50. Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., Fukuda, K.: Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol. Biochem. 72(3), 805–810 (2008)

    Google Scholar 

  51. Sun, R., Song, X., Sun, R., Jiang, J.: Effect of lignin content on enzymatic hydrolysis of furfural residues. BioResources 6(1), 317–328 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding from North Carolina State University College of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kolar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, W., Savithri, D., Sharma-Shivappa, R. et al. Effect of Sodium Hydroxide Pretreatment on Lignin Monomeric Components of Miscanthus × giganteus and Enzymatic Hydrolysis. Waste Biomass Valor 11, 5891–5900 (2020). https://doi.org/10.1007/s12649-019-00859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00859-8

Keywords

Navigation