Skip to main content
Log in

The Evolution of Microbial Community during Acclimation for High Sodium Food Waste Anaerobic digestion

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digestion is a promising method for treating the rapidly increasing food wastes. However, the high level of sodium salt in food waste significantly inhibited the anaerobic digestion process. In this study, acclimation was conducted to adapt to the high sodium food waste. The evolution of microbial community during acclimation process was characterized by high-throughput sequencing based on the 16S rRNA gene. The results revealed that the predominant phyla were Bacteroidetes, Firmicutes, Thermotogae, Chloroflexi, Proteobacteria and Synergistetes. The increase of functional genera Kosmtoga, Levilinea and Longilinea during the process potentially promoted the biodegradation of organics. As for the archaea community, the mixotrophic methanogens Methanosaricina was almost replaced by hydrogenotrophic methanogens Methanobacterium and Methanocorpusculum. The variations of pH and volatile fatty acid during acclimation provided additional information on the adaptation of microorganisms to the high sodium environment. The biogas production of food waste inoculated with acclimated sludge was increased by 63.6% compared with the raw sludge.

Graphic Abstract

The evolutions of bacterial and archaea communities during acclimation at the phylum level

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Han, W., Zhao, Y., Chen, H.: Study on biogas production of joint anaerobic digestion with excess sludge and kitchen waste. Procedia Environ. Sci. 35, 756–762 (2016)

    Article  Google Scholar 

  2. Chen, F., Chen, H., Guo, D., Han, S., Long, R.: How to achieve a cooperative mechanism of MSW source separation among individuals—an analysis based on evolutionary game theory. J. Clean. Prod. 195, 521–531 (2018)

    Article  Google Scholar 

  3. Wan, S., Sun, L., Sun, J., Luo, W.: Biogas production and microbial community change during the co-digestion of food waste with Chinese silver grass in a single-stage anaerobic reactor. Biotechnol. Bioprocess Eng. 18, 1022–1030 (2013)

    Article  Google Scholar 

  4. Chen, H., Wei, J., Yu, Y., Yan, Y., Xin, M.: State of the art on food waste research: a bibliometrics study from 1997 to 2014. J. Clean. Prod. 140, 840–846 (2017)

    Article  Google Scholar 

  5. Rajendran, K., Kankanala, H.R., Martinsson, R., Taherzadeh, M.J.: Uncertainty over techno-economic potentials of biogas from municipal solid waste (MSW): a case study on an industrial process. Appl. Energy 125, 84–92 (2014)

    Article  Google Scholar 

  6. Paritosh, K., Kushwaha, S.K., Yadav, M., Pareek, N., Chawade, A., Vivekanand, V.: Food waste to energy: an overview of sustainable approaches for food waste management and nutrient recycling. Biomed. Res. Int. 2017, 1–19 (2017)

    Article  Google Scholar 

  7. Lin, C.S.K., Pfaltzgraff, A.L.A., Herrero-Davila, B.L., Mubofu, C.E.B., Abderrahim, D.S., Clark, E.J.H., Koutinas, B., Kopsahelis, F.N., Stamatelatou, F.K., Dickson, G.F.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426–464 (2013)

    Article  Google Scholar 

  8. Hidaka, T., Wang, F., Tsumori, J.: Comparative evaluation of anaerobic digestion for sewage sludge and various organic wastes with simple modeling. Waste Manag. 43, 144–151 (2015)

    Article  Google Scholar 

  9. Xu, F., Li, Y., Ge, X., Yang, L., Li, Y., Xu, F., Li, Y., Ge, X., Yang, L., Li, Y.: Anaerobic digestion of food waste—challenges and opportunities. Bioresour. Technol. 247, 1047–1058 (2017)

    Article  Google Scholar 

  10. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99, 4044–4064 (2008). https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  11. Mao, C., Feng, Y., Wang, X., Ren, G.: Review on research achievements of biogas from anaerobic digestion. Renew. Sustain. Energy Rev. 45, 540–555 (2015)

    Article  Google Scholar 

  12. Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48, 901–911 (2013)

    Article  Google Scholar 

  13. Oh, S.T., Martin, A.D.: A thermodynamic equilibrium consideration of the effect of sodium ion in acetoclastic methanogenesis. J. Chem. Technol. Biotechnol. 88, 834–844 (2013)

    Article  Google Scholar 

  14. Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139–158 (2005)

    Article  Google Scholar 

  15. Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M.: Ion homeostasis in NaCl stress environments. Plant Physiol. 109, 735 (1995)

    Article  Google Scholar 

  16. Oh, G., Zhang, L., Jahng, D.: Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. J. Chem. Technol. Biotechnol. 1210, 1204–1210 (2008)

    Article  Google Scholar 

  17. Anwar, N., Wang, W., Zhang, J., Li, Y., Chen, C., Liu, G., Zhang, R.: Effect of sodium salt on anaerobic digestion of kitchen waste. Water Sci. Technol. 73, 1865–1871 (2016)

    Article  Google Scholar 

  18. Zhao, J., Zhang, C., Wang, D., Li, X., An, H.: Revealing the underlying mechanisms of how sodium chloride affects short-chain fatty acid production from the co-fermentation of waste activated sludge and food waste. Sustain. Chem. Eng. 4, 4675–4684 (2016)

    Article  Google Scholar 

  19. Appels, L., Baeyens, J., Degrève, J., Dewil, R.: Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008)

    Article  Google Scholar 

  20. Chen, W., Han, S., Sung, S.: Sodium inhibition of thermophilic methanogens sodium inhibition of thermophilic methanogens. J. Environ. Eng. 129, 506–512 (2003)

    Article  Google Scholar 

  21. Li, Q., Cheng, X., Yuwen, C., Yang, X., Qiao, W., Li, Y., Wang, X.: Strategies for the stable performance and rapid inhibition recovery of a thermophilic digester treating coffee wastes and the synergistic effects of microbes. Int. Biodeterior. Biodegrad. 132, 114–121 (2018)

    Article  Google Scholar 

  22. Antwi, P., Li, J., Boadi, P.O., Meng, J., Shi, E., Chi, X., Deng, K., Ayivi, F.: Dosing effect of zero valent iron (ZVI) on biomethanation and microbial community distribution as revealed by 16S rRNA high-throughput sequencing. Int. Biodeterior. Biodegrad. 123, 191–199 (2017)

    Article  Google Scholar 

  23. Fykse, E.M., Aarskaug, T., Madslien, E.H., Dybwad, M.: Microbial community structure in a full-scale anaerobic treatment plant during start-up and first year of operation revealed by high-throughput 16S rRNA gene amplicon sequencing. Bioresour. Technol. 222, 380–387 (2016)

    Article  Google Scholar 

  24. Wong, M.T., Zhang, D., Li, J., Hui, R.K.H., Tun, H.M., Brar, M.S., Park, T.-J., Chen, Y., Leung, F.C.: Towards a metagenomic understanding on enhanced biomethane production from waste activated sludge after pH 10 pretreatment. Biotechnol. Biofuels. 6, 38 (2013)

    Article  Google Scholar 

  25. Jang, H.M., Ha, J.H., Kim, M.S., Kim, J.O., Kim, Y.M., Park, J.M.: Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure. Water Res. 99, 140–148 (2016)

    Article  Google Scholar 

  26. Federation, W.E., Association, A.P.H.: Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA (2005)

    Google Scholar 

  27. Callahan, B.J., Mcmurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J., Holmes, S.P.: DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016)

    Article  Google Scholar 

  28. Desantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G.L.: Greengenes: chimera-checked 16S rRNA gene database and workbench compatible in ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006)

    Article  Google Scholar 

  29. Mendez, R., Lema, J.M., Soto, M.: Treatment of seafood-processing wastewaters in mesophilic and thermophilic anaerobic filters. Water Environ. Res. 67, 33–45 (1995)

    Article  Google Scholar 

  30. Yerkes, D.W., Boonyakitsombut, S., Speece, R.E.: Antagonism of sodium toxicity by the compatible solute betaine in anaerobic methanogenic systems. Water Sci. Technol. 36, 15–24 (1997)

    Article  Google Scholar 

  31. Li, Q., Yuwen, C., Cheng, X., Yang, X., Chen, R., Wang, X.C.: Responses of microbial capacity and community on the performance of mesophilic co-digestion of food waste and waste activated sludge in a high- frequency feeding CSTR. Bioresour. Technol. 260, 85–94 (2018)

    Article  Google Scholar 

  32. Herto Dwi, A., Tsukasa, I., Satoshi, O.: Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res. 41, 1554–1568 (2007)

    Article  Google Scholar 

  33. Desvignes, V., Pelletier, E., Rivie, D., Guermazi, S., Weissenbach, J., Li, T., Camacho, P., Sghir, A.: Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J. 3, 700–714 (2009)

    Article  Google Scholar 

  34. Jensen, P.D., Astals, S., Lu, Y., Devadas, M., Batstone, D.J.: Anaerobic codigestion of sewage sludge and glycerol, focusing on process kinetics, microbial dynamics and sludge dewaterability. Water Res. 67, 355–366 (2014)

    Article  Google Scholar 

  35. Dipippo, J.L., Nesbø, C.L., Dahle, H., Doolittle, W.F., Birkland, N.K., Noll, K.M.: Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int. J. Syst. Evol. Microbiol. 59, 2991–3000 (2009)

    Article  Google Scholar 

  36. Yamada, T., Imachi, HO, Ohashi A., Harada, H., Hanada, S., Kamagata, Y., Sekiguchi, Y.: Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57, 2299 (2007).

    Article  Google Scholar 

  37. Fan, C., Qing, X., Lu-Kwang, J.: Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence. Appl. Environ. Microbiol. 69, 6715 (2003)

    Article  Google Scholar 

  38. Liu, C., Li, H., Zhang, Y., Si, D., Chen, Q.: Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresour. Technol. 216, 87–94 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge the Key Research and Development Program of Zhejiang Province (2018C03041) and “Science and Technology Innovation 2025” Major Project of Ningbo City (2018B10025). Special thanks to those people in Zhejiang University who provided help to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wang, F. & Chi, Y. The Evolution of Microbial Community during Acclimation for High Sodium Food Waste Anaerobic digestion. Waste Biomass Valor 11, 6057–6063 (2020). https://doi.org/10.1007/s12649-019-00851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00851-2

Keywords

Navigation