Skip to main content

Advertisement

Log in

Optimization of Energy Recovery from Cellulosic Wastewater Using Mesophilic Single-Stage Bioreactor

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The efficiency of single-stage biohythane production from synthetic cellulosic wastewater under mesophilic temperature was investigated. A lab-scale continuously stirred tank reactor was conducted at a hydraulic retention time of 10 days using mixed microflora without pretreatment. The experimental results show that a stable methane and hydrogen yields of 18.2 ± 0.16 and 5.6 ± 0.31 L/kg VS were maintained for 240 days, respectively with acetate/butyrate ratio of 0.39 as the main byproducts. Based on COD mass balance, more than 45% of the decomposed COD converted to bio-hythane, which means that the setting temperature 37 °C and pH improved the conditions of degradation efficiency. The energy recovery calculations indicated that the total net energy was 4.54 MJ/m3 of cellulosic wastewater. This work contributes to the limited knowledge on continuous cellulosic-hythane conversion into a safe and clean form of energy.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Atelge, M.R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D.D., Chang, S.W., Atabani, A.E., Al-Muhtaseb, A.H., Unalan, S.: Biogas production from organic waste: recent progress and perspectives. Waste Biomass Valoriz. (2018). https://doi.org/10.1007/s12649-018-00546-0

    Article  Google Scholar 

  2. Eden: Eden Annual Report. www.edenenergy.com.au (2010)

  3. Bauer, C.G., Forest, T.W.: Effect of hydrogen addition on the performance of methane-fueled vehicles Part I: effect on SI engine performance. Int. J. Hydrogen Energy. 26, 55–70 (2001)

    Article  Google Scholar 

  4. Fulton, J., Marmaro, R., Egan, G.: System for producing a hydrogen enriched fuel. US Patent. 7721682 (2010)

  5. Gadow, S.I., Jiang, H., Hojo, T., Li, Y.Y.: Cellulosic hydrogen production and microbial community characterization in hyper-thermophilic continuous bioreactor. Int. J. Hydrogen Energy. 38(18), 7259–7267 (2013)

    Article  Google Scholar 

  6. Cavinato, C., Giuliano, A., Bolzonella, D., Pavan, P., Cecchi, F.: Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int. J. Hydrogen Energy. 37(15), 11549–11555 (2012)

    Article  Google Scholar 

  7. Bolzonella, D., Mıcoluccı, F., Battısta, F., Cavınato, C., Gottardo, M., Pıovesan, S., Pavan, P. Producing biohythane from urban organic wastes. Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-018-00569-7

    Article  Google Scholar 

  8. Roy, S., Das, D.: Biohythane production from organic wastes: present state of art. Environ. Sci. Pollut. Res. 23(10), 9391–9410 (2016)

    Article  Google Scholar 

  9. Willquist, K., Nkemka, V.N., Svensson, H., Pawar, S., Ljunggren, M., Karlsson, H., Murto, M., Hulteberg, C., van Niel, E.W., Liden, G.: Design of a novel biohythane process with high H2 and CH4 production rates. Int. J. Hydrogen Energy. 37(23), 17749–17762 (2012)

    Article  Google Scholar 

  10. Si, B., Liu, Z., Zhang, Y., Li, J., Shen, R., Zhu, Z., Xing, X.: Towards biohythane production from biomass: influence of operational stage on anaerobic fermentation and microbial community. Int. J. Hydrogen Energy. 41(7), 4429–4438 (2016)

    Article  Google Scholar 

  11. Kumari, S., Das, D.: Biohythane production from sugarcane bagasse and water hyacinth: a way towards promising green energy production. J. Clean. Prod. 207, 689–701 (2019)

    Article  Google Scholar 

  12. Michalopoulos, I., Lytras, G.M., Mathioudakis, D., Lytras, C., Goumenos, A., Zacharopoulos, I., Papadopoulou, K., Lyberatos, G.: Hydrogen and methane production from food residue biomass product (FORBI). Waste Biomass Valoriz. (2019). https://doi.org/10.1007/s12649-018-00550-4

    Article  Google Scholar 

  13. Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., Xing, X.H.: States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresour. Technol. 135, 292–303 (2013)

    Article  Google Scholar 

  14. Si, B.C., Li, J.M., Zhu, Z.B., Zhang, Y.H., Lu, J.W., Shen, R.X., Zhang, C., Xing, X.H., Liu, Z.: Continuous production of biohythane from hydrothermal liquefied cornstalk biomass via two-stage high-rate anaerobic reactors. Biotechnol. Biofuels. 9(1), 254 (2016)

    Article  Google Scholar 

  15. Yeshanew, M.M., Frunzo, L., Pirozzi, F., Lens, P.N., Esposito, G.: Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors. Bioresour. Technol. 220, 312–322 (2016)

    Article  Google Scholar 

  16. Giuliano, A., Zanetti, L., Micolucci, F., Cavinato, C.: Thermophilic two-phase anaerobic digestion of source-sorted organic fraction of municipal solid waste for bio-hythane production: effect of recirculation sludge on process stability and microbiology over a long-term pilot-scale experience. Water Sci. Technol. 69(11), 2200–2209 (2014)

    Article  Google Scholar 

  17. Kulkarni, M.B., Ghanegaonkar, P.M.: Biogas generation from floral waste using different techniques. Glob. J. Environ. Sci. Manag. 5(1), 17–30 (2019)

    Google Scholar 

  18. Sangyoka, S., Reungsang, A., Lin, C.Y.: Optimization of biohydrogen production from sugarcane bagasse by mixed cultures using a statistical method. Sustain. Environ. Res. 26(5): 235–42 (2016)

    Article  Google Scholar 

  19. Jiang, H., Gadow, S.I., Tanaka, Y., Cheng, J., Li, Y.Y.: Improved cellulose conversion to bio-hydrogen with thermophilic bacteria and characterization of microbial community in continuous bioreactor. Biomass Bioenergy. 75, 57–64 (2015)

    Article  Google Scholar 

  20. Kim, B.K., Lee, B.H., Lee, Y.J., Jin, I.H., Chung, C.H., Lee, J.W.: Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb. Technol. 44(6–7), 411–416 (2009)

    Article  Google Scholar 

  21. Jiang, H., Qin, Y., Gadow, S.I., Ohnishi, A., Fujimoto, N., Li, Y.Y.: Bio-hythane production from cassava residue by two-stage fermentative process with recirculation. Bioresour. Technol. 247, 769–775 (2018)

    Article  Google Scholar 

  22. Botta, L.S., Ratti, R.P., Sakamoto, I.K., Ramos, L.R., Silva, E.L., Varesche, M.B.A.: Bioconversion of waste office paper to hydrogen using pretreated rumen fluid inoculum. Bioprocess Biosyst. Eng. 39(12), 1887–1897 (2016)

    Article  Google Scholar 

  23. Ratti, R.P., Botta, L.S., Sakamoto, I.K., Varesche, M.B.A.: Microbial diversity of hydrogen-producing bacteria in batch reactors fed with cellulose using leachate as inoculum. Int. J. Hydrogen Energy. 38(23), 9707–9717 (2013)

    Article  Google Scholar 

  24. Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., Champreda, V.: Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme Microb. Technol. 47(6), 283–290 (2010)

    Article  Google Scholar 

  25. American Public Health Association (APHA): Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington (2005)

    Google Scholar 

  26. Song, L., Li, D., Cao, X., Tang, Y., Liu, R., Niu, Q., Li, Y.Y.: Optimizing biomethane production of mesophilic chicken manure and sheep manure digestion: mono-digestion and co-digestion kinetic investigation, autofluorescence analysis and microbial community assessment. J. Environ. Manag. 237, 103–113 (2019)

    Article  Google Scholar 

  27. Lay, J.J.: Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol. Bioeng. 74, 281–287 (2001)

    Article  Google Scholar 

  28. Pasupuleti, S.B., Mohan, S.V.: Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresour. Technol. 189, 177–185 (2015)

    Article  Google Scholar 

  29. Yan, L., Gao, Y., Wang, Y., Liu, Q., Sun, Z., Fu, B., Wang, W.: Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour. Technol. 111, 49–54 (2012)

    Article  Google Scholar 

  30. Girbal, L., Croux, C., Vasconcelos, I., Soucaille, P.: Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Rev. 17(3), 287–297 (1995)

    Article  Google Scholar 

  31. Ren, N., Xing, D., Rittmann, B.E., Zhao, L., Xie, T., Zhao, X.: Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ. Microbiol. 9(5), 1112–1125 (2007)

    Article  Google Scholar 

  32. Lay, C.H., Chang, F.Y., Chu, C.Y., Chen, C.C., Chi, Y.C., Hsieh, T.T., Huang, H.H., Lin, C.Y.: Enhancement of anaerobic biohydrogen/methane production from cellulose using heat-treated activated sludge. Water Sci. Technol. 63(9), 1849–1854 (2011)

    Article  Google Scholar 

  33. Logan, B.E., Oh, S.E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)

    Article  Google Scholar 

  34. Wang, B., Nges, I.A., Nistor, M., Liu, J.: Determination of methane yield of cellulose using different experimental setups. Water Sci. Technol. 70(4), 599–604 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Ibrahim Gadow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadow, S.I., Li, YY. Optimization of Energy Recovery from Cellulosic Wastewater Using Mesophilic Single-Stage Bioreactor. Waste Biomass Valor 11, 6017–6023 (2020). https://doi.org/10.1007/s12649-019-00837-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00837-0

Keywords

Navigation