Skip to main content
Log in

Techno-economic and Environmental Evaluation of Cheesemaking Waste Valorization Through Process Simulation Using SuperPro Designer

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The objective of this work was to perform a techno-economic and environmental assessment of several technological alternatives for production of whey syrups and protein concentrate (WPC) via process simulation under two scenarios: Stand-alone process and process attached to a cheese production plant.

Methods

Information related to different industrial dairy processes (parameters, variables and diagrams) was consulted and gathered. A base case and three alternative technological configurations for production of whey syrups and WPC were designed. SuperPro Designer was employed as the process simulation tool and for the techno-economic assessment of the technological configurations, and WARGUI software was used for their environmental evaluation. A combined techno-economic and environmental indicator was calculated to identify the best alternative.

Results

The alternative involving the production of WPC, glucose syrup, and glucose and fructose syrup had the best economic indicators (net present value of $3,381,000 and $16,354,000 for the stand-alone and attached processes, respectively). This alternative had a Potential Environmental Impact of 14,510 PEI/kg products for both scenarios. Water recovery from different waste streams was simulated, managing to reuse 322,338,477 kg water/year.

Conclusions

The implementation of a process for producing whey syrups and WPC attached to a cheese production facility has the potential to generate a significant profitability for the dairy industries in a middle-income country like Colombia. Simulation techniques employed are a powerful supporting tool when making decisions in investment projects for valorization of waste from the food industry in order to find the most appropriate process configuration.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Adapted from Chen et al. [45]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. OCDE-FAO: Agricultural Perspectives 2015–2024. https://www.fao.org/3/a-i4738s.pdf (2015). Accessed 23 Dec 2017

  2. USDA: Cheese production and consumption: summary for selected countries. United States Department of Agriculture (USDA). https://apps.fas.usda.gov/psdonline/app/index.html#/app/downloads (2018). Accessed 18 Mar 2018

  3. Liu, X., Yoon, C., Shang, Y., Yousef, A.: Continuous nisin production in laboratory media and whey permeate by immobilized Lactococcus lactis. Process Biochem. 40(1), 13–24 (2005)

    Article  Google Scholar 

  4. AB Newswire: Whey protein ingredients market global industry analysis, key vendors, opportunity and forecast 2018 to 2023. AB Newswire. https://www.abnewswire.com/pressreleases/whey-protein-ingredients-market-global-industry-analysis-key-vendors-opportunity-and-forecast-2018-to-2023_180863.html (2018). Accessed 6 Mar 2018

  5. DANE: Encuesta anual manufacturera (Annual manufacturing survey, in Spanish). Departamento Administrativo Nacional de Estadística (DANE). https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam (2018). Accessed 26 Mar 2018

  6. Sierra, J.: Al día, Colanta pulverizará 400.000 litros de leche (Up to date, Colanta will pulverize 400,000 liters of milk, in Spanish). El Colombiano. https://www.elcolombiano.com/al_dia_colanta_pulverizara_400000_litros_de_leche-HFEC_316313 (2014). Accessed 10 July 2015

  7. CECODES: Cambiando el rumbo 2009. Casos de sostenibilidad en Colombia (Changing course 2009. Sustainability cases in Colombia, in Spanish). Consejo Empresarial Colombiano para el Desarrollo Sostenible (CECODES). https://cecodes.org.co/site/wp-content/uploads/publicaciones/cambiando-el-rumbo-2009.pdf (2009). Accessed 24 Oct 2017

  8. Ministerio de la Protección Social: Resolución N° 715 (Resolution No. 715, in Spanish). In: Ministerio de la Protección Social de Colombia. 2 p. Bogotá (2009)

  9. Santos, L., Gonçalves, C., Ishii, P., Suguimoto, H.: Deproteinization: an integrated-solution approach to increase efficiency in β-galactosidase production using cheese whey powder (CWP) solution. Rev. Ambient. Agua 12, 643–651 (2017)

    Article  Google Scholar 

  10. Schaller, A.: Cadenas alimentarias. Sueros de lechería (Food chains. Dairy wheys, in Spanish). Ministerio de Agricultura, Ganadería y Pesca. https://www.alimentosargentinos.gob.ar/contenido/revista/ediciones/44/cadenas/r44_06_SueroLacteo.pdf (2013). Accessed 5 Dec 2017

  11. Pak, Tetra: Dairy Processing Handbook. Tetra Pak Processing Systems, Lund (1995)

    Google Scholar 

  12. Gänzle, M., Gottfried, H.: Lactose: crystallization, hydrolysis and value-added derivatives. Int. Dairy J. 18, 685–694 (2008)

    Article  Google Scholar 

  13. British Nutrition Foundation: Lactose intolerance. https://www.nutrition.org.uk/nutritionscience/allergy/lactose-intolerance.html (2018). British Nutrition Foundation. Accessed 12 Mar 2018

  14. Torres, D., Gonçalves, M., Teixeira, J., Rodrigues, L.: Galacto-oligosaccharides-production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 9(5), 438–454 (2010)

    Article  Google Scholar 

  15. Gómez, J., Sánchez, Ó.: Producción de galactooligosacáridos: alternativa para el aprovechamiento del lactosuero. Una revisión (Production of galactooligosaccharides: alternative for whey utilization. A review, in Spanish). Ing. Desarr. 37(1), 129–158 (2019)

  16. Sánchez, Ó., Ortiz, M., Betancourt, L.: Obtención de ácido cítrico a partir de suero de leche por fermentación con Aspergillus spp. (Production of citric acid from whey by fermentation with Aspergillus spp., in Spanish). Rev. Col. Biotecnol. 6(1), 43–54 (2004)

    Google Scholar 

  17. Gómez, J., Sánchez, Ó., Benavides, X.: Análisis de patentes como aproximación al diseño conceptual del proceso de obtención de jarabe de lactosuero (Patent analysis as an approach to the conceptual design of the process for whey syrup production, in Spanish). Rev. Invest. Desarr. Innov. 7(2), 331–353 (2017)

    Google Scholar 

  18. Harju, M., Kallioinen, H., Tossavainen, O.: Lactose hydrolysis and other conversions in dairy products: technological aspects. Int. Dairy J. 22(2), 104–109 (2012)

    Article  Google Scholar 

  19. Illanes, A.: Whey upgrading by enzyme biocatalysis. Electron. J. Biotechnol. 14(6), 1–28 (2011)

    Article  Google Scholar 

  20. Shah, N., Nickerson, T.: Functional properties of hydrolyzed lactose: crystallization. J. Food Sci. 43(4), 1085–1086 (2006)

    Article  Google Scholar 

  21. EPA: Waste Reduction Algorithm: chemical process simulation for waste reduction. Environmental Protection Agency (EPA). https://www.epa.gov/chemical-research/waste-reduction-algorithm-chemical-process-simulation-waste-reduction (2016). Accessed 12 Apr 2018

  22. Young, D., Cabezas, H.: Designing sustainable processes with simulation: the waste reduction (WAR) algorithm. Comput. Chem. Eng. 23(10), 1477–1491 (1999)

    Article  Google Scholar 

  23. Aktiva: Estudios sectoriales-sector lácteo en Colombia 2016–2017 (Sectoral studies-dairy sector in Colombia 2016–2017, in Spanish). Aktiva. https://www.aktiva.com.co/app/webroot/blog/Estudios%20sectoriales/2017/Sector_lacteos.pdf (2017). Accessed 25 Feb 2017

  24. Fedegan: Producción de leche cruda (Raw milk production, in Spanish). Federación Colombiana de Ganaderos (Fedegan). https://www.fedegan.org.co/estadisticas/produccion-0 (2012). Accessed 5 Mar 2018

  25. Departamento Nacional de Planeación: Documento Conpes 3676. Consolidación de la Política Sanitaria y de Inocuidad para las Cadenas Láctea y Cárnica (Document Conpes 3676. Consolidation of the Health and Safety Policy for the Milk and Meat Chains, in Spanish). Departamento Nacional de Planeación. https://www.ica.gov.co/getattachment/3b31038a-72ba-40f9-a34d-cecd89015890/2010cp3676.aspx (2010). Accessed 22 Apr 2016

  26. Fedegan: ¿Cuántos litros de leche se necesitan para producir un 1 kg de queso? (How many liters of milk are needed to produce 1 kg of cheese?, in Spanish). Federación Colombiana de Ganaderos (Fedegan). https://www.contextoganadero.com/ganaderia-sostenible/cuantos-litros-de-leche-se-necesitan-para-producir-un-1-kg-de-queso (2012). Accessed 25 Mar 2018

  27. APV: APV Dryerhandbook. APV. https://userpages.umbc.edu/~dfrey1/ench445/apv_dryer.pdf (2012). Accessed 12 August 2017

  28. Aspen: Aspen Icarus reference guide. Icarus evaluation engine (IEE) V7.3.1. AspenTech. https://www.aspentech.com (2011). Accessed 4 May 2017

  29. U.S. Dairy Export Council: Reference Manual for U.S. Whey and Lactose Products. U.S. Dairy Export Council, Virginia (2008)

  30. Anand, S., Khanal, S., Marella, C.: Whey and whey products. In: Park, Y., Haenlein, G. (eds.) Milk and Dairy Products in Human Nutrition: Production, Composition and Health, pp. 477–497. Wiley, West Sussex (2013)

    Chapter  Google Scholar 

  31. Guy, E.: Purification of syrups from hydrolyzed lactose in sweet whey permeate. J. Dairy Sci. 62(3), 384–391 (1979)

    Article  Google Scholar 

  32. Chiu, C., Kosikowski, F.: Conversion of glucose in lactase-hydrolyzed whey permeate to fructose with immobilized glucose isomerase. J. Dairy Sci. 69(4), 959–964 (1986)

    Article  Google Scholar 

  33. Wierzbicki, L., Kosikowski, F.: Food syrups from acid whey treated with β-galactosidase of Aspergillus niger. J. Dairy Sci. 56, 1182–1184 (1973)

    Article  Google Scholar 

  34. Guy, E., Edmondson, L.: Preparation and properties of syrups made by hydrolysis of lactose. J. Dairy Sci. 61, 542–549 (1978)

    Article  Google Scholar 

  35. Giec, A., Kosikowski, F.: Low temperature lactose hydrolysis of concentrated whey permeates. J. Dairy Sci. 66, 396–399 (1983)

    Article  Google Scholar 

  36. Chiu, C., Kosikowski, F.: Hydrolyzed lactose syrup from concentrated sweet whey permeates. J. Dairy Sci. 68(1), 16–22 (1985)

    Article  Google Scholar 

  37. Harrison, R., Todd, P., Rudge, S., Petrides, D.: Bioseparations Science and Engineering. Oxford University Press, New York (2003)

    Google Scholar 

  38. Peters, M., Timmerhaus, K.: Plant Desing and Economics for Chemical Engineers. McGraw-Hill, Singapore (1991)

    Google Scholar 

  39. Puigjaner, L., Ollero, P., De Prada, C., Jiménez, L.: Estrategias de Modelado, Simulación y Optimización de Procesos Químicos (Strategies for Modeling, Simulation and Optimization of Chemical Processes, in Spanish). Síntesis, Madrid (2006)

    Google Scholar 

  40. Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes. McGraw-Hill, New York (2001)

    Google Scholar 

  41. WageIndicator-Tusalario.org/Colombia: Función y salario (Function and salary, in Spanish). Tusalario.org/Colombia. https://www.tusalario.org/colombia/Portada/carrera/funcion-y-salario (2019). Accessed 4 Apr 2019

  42. Ministerio de Trabajo: Calculadora laboral (Labor calculator, in Spanish). Ministerio de Trabajo. https://www.mintrabajo.gov.co/web/guest/atencion-al-ciudadano/tramites-y-servicios/mi-calculadora?inheritRedirect=true (2019). Accessed 20 Mar 2019

  43. Young, D., Scharp, R., Cabezas, H.: The waste reduction (WAR) algorithm: environmental impacts, energy consumption, and engineering economics. Waste Manag. 20, 605–6015 (2000)

    Article  Google Scholar 

  44. Sánchez, Ó., Cardona, C.: Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis. Bioresour Technol. 104, 305–314 (2012)

    Article  Google Scholar 

  45. Chen, H., Wen, Y., Waters, M., Shonnard, D.: Design guidance for chemical processes using environmental and economic assessments. Ind. Eng. Chem. Res. 41(18), 4503–4513 (2002)

    Article  Google Scholar 

  46. Imran, B., Khan, S., Qazi, I., Arshad, M.: Removal and recovery of sodium hydroxide (NaOH) from industrial wastewater by two-stage diffusion dialysis (DD) and electrodialysis (ED) processes. Desalin. Water Treat. 57(17), 7926–7932 (2016)

    Article  Google Scholar 

  47. Merkel, A., Ashrafi, A., Ondrušek, M.: The use of electrodialysis for recovery of sodium hydroxide from the high alkaline solution as a model of mercerization wastewater. J. Water Process Eng. 20, 123–129 (2017)

    Article  Google Scholar 

  48. ISI: Typical properties of High Fructose Syrups (HFS). International Starch Institute (ISI). https://www.starch.dk/isi/glucose/fructose.asp (2018). Accessed 3 Mar 2018

  49. FDA: CFR—Code of Federal Regulations Title 21. U.S. Food and Drug Administration (FDA). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=184.1866 (2017). Accessed 10 June 2018

  50. Temiz, A., Yilmaz, R., Saglam, N., Ülger, C.: High fructose syrup production from whey lactose using microbial β-galactosidase and glucose isomerase. Milchwissenschaft 3(4), 121–124 (2003)

    Google Scholar 

  51. Kotoupas, A., Rigas, F., Chalaris, M.: Computer-aided process design, economic evaluation and environmental impact assessment for treatment of cheese whey wastewater. Desalination 213(1), 238–252 (2007)

    Article  Google Scholar 

  52. El-Halwagi, M.: Process Integration. Elsevier, San Diego (2006)

    Google Scholar 

  53. Kemp, I.: Pinch Analysis and Process Integration. User Guide on Process Integration for the Efficient Use of Energy. Elsevier, Oxford (2007)

  54. Superservicios, DNP: Disposición final de residuos sólidos. Informe nacional 2016 (Final disposal of solid waste. National report 2016, in Spanish). Departamento Nacional de Planeación (DNP). https://www.superservicios.gov.co/content/download/23144/187347 (2016). Accessed June 18 2018

  55. Navarro, A., Perez, R., Rodrigues, V., Dias, D., Minim, L.: Integrated production of whey protein concentrate and lactose derivatives: what is the best combination? Food Res. Int. 73, 62–74 (2015)

    Article  Google Scholar 

  56. FAO: Norma para los azúcares CODEX STAN 212–1999 (Standard for sugars CODEX STAN 212-1999, in Spanish). Food and Agriculture Organization of the United Nations (FAO). https://www.fao.org/search/en/?cx=018170620143701104933%3Aqq82jsfba7w&q=STAN+212-1999&cof=FORID%3A9&siteurl=www.fao.org%2Fhome%2Fen%2F&ref=&ss=0j0j2 (1999). Accessed Mar 20 2019

  57. ICONTEC: NTC 610. Industrias alimentarias, jarabe de glucosa (Food industries, glucose syrup, in Spanish). In: Instituto Colombiando de Normas Técnicas y Certificación (ICONTEC) (ed.). p. 7. Bogotá (2001)

  58. Zydney, A.: Protein separations using membrane filtration: new opportunities for whey fractionation. Int. Dairy J. 8, 243–250 (1998)

    Article  Google Scholar 

  59. Alsaed, A., Ahmad, R., Aldoomy, H., El-Qader, S., Saleh, D., Sakejha, H., Mustafa, L.: Characterization, concentration and utilization of sweet and acid whey. Pak. J. Nutr. 12(2), 172–177 (2013)

    Article  Google Scholar 

  60. CHEC: Tarifas reguladas (Regulated rates, in Spanish). CHEC. https://www.chec.com.co/clientes-y-usuarios/tu-factura/tarifas-reguladas (2018). Accessed 14 Augt 2018

  61. Efigas: Tarifas (Rates, in Spanish). Efigas. https://www.efigas.com.co/Nuestros-usuarios/Tarifas (2018). Accessed 15 Aug 2018

  62. Aguas de Manizales: Tarifa de agua (Water rate, in Spanish). Aguas de Manizales. https://www.aguasdemanizales.com.co/Portals/Aguas2016/AtencionUsuario/Documentos/Tarifas_JULIO_2018.pdf?ver=2018-08-29-095631-893 (2018). Accessed 25 Aug 2018

  63. DANE: Índice de precios al consumidor (Consumer price index, in Spanish). Departamento Administrativo Nacional de Estadística (DANE). https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-y-costos/indice-de-precios-al-consumidor-ipc (2019). Accessed 23 Jan 2019

  64. Banco de la República: Tasas de captación (Collection rates, in Spanish). Banco de la República. https://www.banrep.gov.co/es/dtf (2019). Accessed 15 Jan 2019

  65. Congreso de la República: Ley N° 1819 (Law No. 1819 in Spanish). In: Congreso de la República de Colombia. p. 174. Bogotá (2016)

Download references

Acknowledgements

The authors thank the Vice-rectorate of Research and Post-graduate Programs at Universidad de Caldas for its administrative and logistic assistance. This work was supported by the Administrative Department of Science, Technology and Innovation of Colombia (Colciencias) through the research project “Design of a Biorefinery for the Use of the Lignocellulosic and Starchy Waste of the Plantain Agribusiness” (Call 757 for Funding of National Doctorates) [Grant Number 1640318]; and the Universidad de Caldas through the research project “Basic Process Development for the Use of Agro-industrial and Urban Waste Under the Concept of Biorefineries” [Grant Number 0240518].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Óscar J. Sánchez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 8, 9, 10 and Table 14 .

Fig. 8
figure 8

Process flowsheet of Alternative 1 for production of glucose syrup and WPC. FI: Raw material (whey). F4, F5, F9: Drinking water input. F3, F7: Air input. F6: Washing solution (NaOH). F10: Ferric sulfate. F11: Polymer. W: Wastewater stream. P1: WPC. P2: Glucose syrup

Fig. 9
figure 9

Process flowsheet of Alternative 2 for production of glucose syrup, glucose and fructose syrup, and WPC. FI: Raw material (whey). F4, F5, F9, F12: Drinking water input. F3, F7: Air input. F6: Washing solution (NaOH). F10: Ferric sulfate. F11: Polymer. W: Wastewater stream. P1: WPC. P2: Glucose syrup. RW: Water recovered

Fig. 10
figure 10

Process flowsheet of Alternative 3 for production of powdered glucose syrup and WPC. FI: Raw material (whey). F4, F5, F9: Drinking water input. F3, F7: Air input. F6: Washing solution (NaOH). F10: Ferric sulfate. F11: Polymer. W: Wastewater stream. P1: WPC. P2: glucose syrup. RW: Water recovered

Table 14 Cost of equipment used in the simulation of the processes for production of WPC and sweetener syrups

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, J.A., Sánchez, Ó.J. & Correa, L.F. Techno-economic and Environmental Evaluation of Cheesemaking Waste Valorization Through Process Simulation Using SuperPro Designer. Waste Biomass Valor 11, 6025–6045 (2020). https://doi.org/10.1007/s12649-019-00833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00833-4

Keywords

Navigation