Skip to main content

Advertisement

Log in

Studies of Mixing Systems in Anaerobic Digesters using CFD and the Future Applications of Nanotechnologies

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Anaerobic digesters are extensively used for the treatment of wastewaters. The impact of nanoparticles, such as silver, zinc oxide, titanium dioxide, and copper oxide within the wastewater treatment systems is recently discussed in the literature. Furthermore, in some cases, different conclusions are drawn from studies investigating the impacts of nanoparticles on the microbial activity, during the anaerobic digestion. For a detailed analysis of this system, a computational fluid-dynamic analysis can be used. In fact, the fluid-dynamic analysis is generally used to evaluate the mixing of anaerobic digesters and different mixing systems can be used: mechanical pumping, mechanical agitation, recirculation of biogas or slurry, pneumatic mixing. An important parameter to evaluate mixing inside digesters is the uniformity index. In general, fermenters for bio-hydrogen production, anaerobic digesters with perfect mixing, photo-bioreactors, bio-film reactors are studied by fluid-dynamic analysis, as shown with the reported literature work of this review. However, more studies should be developed regarding the application of nanotechnologies in anaerobic digesters to evaluate the heat and mass transfer during mixing, using the computational fluid-dynamics analysis. This can be an important research for the next future.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kissel, R., Effenberger, M.: Empfehlungen für die Auswahl von Rührwerken für Gärbehälter (in German), pp. 1–16. Freising, Biogas Forum Bayern (2010)

    Google Scholar 

  2. Bello-Mendoza, R., Sharratt, P.N.: Modelling the effects of imperfect mixing on the performance of anaerobic reactors for sewage sludge treatment. J. Chem. Technol. Biotechnol. 71, 121–130 (1998)

    Google Scholar 

  3. Stafford, D.A.: The effects of mixing and volatile fatty acid concentrations on anaerobic digester performance, Trib. Cebedeau 456, 493–500 (1981)

    Google Scholar 

  4. Perot, C., Sergent, M., Richard, P., Luu, P.Y., Millot, R.: The effects of pH, temperature and agitation speed on sludge anaerobic hydrolysis-acidification. Environ. Technol. Lett. 9, 741–752 (1988)

    Google Scholar 

  5. Lin, K.C., Pearce, M.E.J.: Effects of mixing on anaerobic treatment of potato-processing wastewater. Can. J. Civ. Eng. 18, 504–514 (1991)

    Google Scholar 

  6. Terashima, M., Goel, R., Komatsu, K., et al.: CFD simulation of mixing in anaerobic digesters. Bioresour. Technol. 100, 2228–2233 (2009)

    Google Scholar 

  7. Butt, J.B.: Reaction Kinetics and Reactor Design. Prentice Hall Inc, Englewood Cliffs (1980)

    Google Scholar 

  8. Cholette, A., Cloutier, L.: Mixing efficiency determinations for continuous flow systems. Can. J. Chem. Eng. 37(3), 105–112 (1959)

    Google Scholar 

  9. Hendricks, D.: Water Treatment Unit Processes: Physical and Chemical. CRC Publishers, Boca Raton (2006)

    Google Scholar 

  10. Vesilind, P.A.: Wastewater Treatment Plant Design. Water Environment Federation, Alexandria (2003)

    Google Scholar 

  11. Robinson, M., Cleary, P.: Flow and mixing performance in helical ribbon mixers. Chem. Eng. Sci. 84, 382–398 (2012)

    Google Scholar 

  12. Gabelle, J.C., Jourdier, E., Licht, R.B., Ben Chaabane, F., Henaut, I., Morchain, J., Augier, F.: Chem. Eng. Sci. 75, 408–417 (2012)

    Google Scholar 

  13. Bustamante, M.A., Restrepo, A.P., Alburquerque, J.A., Pérez-Murcia, M.D., Paredes, C., Moral, R., Bernal, M.P.: Recycling of anaerobic digestates by composting: effect of the bulking agent used. J Clean. Prod. 47, 61–69 (2013)

    Google Scholar 

  14. Bezzo, F., Macchietto, S., Pantelides, C.C.: General hybrid multi zonal CFD approach for bioreactor modeling. AIChEJ. 49, 2133–2148 (2003)

    Google Scholar 

  15. Ameur, H.: Mixing of complex fluids with flat and pitched bladed impellers: effect of blade attack angle and shear-thinning behavior. Food Bioprod. Process. 99, 71–77 (2016)

    Google Scholar 

  16. Khalili, F., Nasr, M.J., Kazemzadeh, A., Ein-Mozaffari, F.: Hydrodynamic performance of the ASI impeller in an aerated bioreactor containing the biopolymer solution through tomography and CFD. Chem. Eng. Res. Des. 125, 190–203 (2017)

    Google Scholar 

  17. Ameur, H.: Modifications in the Rushton turbine for mixing viscoplastic fluids. J. Food Eng. 233, 117–125 (2018)

    Google Scholar 

  18. Jobst, K.: Bewertung von Mischprozessen mittels Prozess-Tomographie (in German). In: Proceedings of the KSB Biogasanwender Forum, Halle an der Saale, Germany (2012)

  19. Peña, M.R., Mara, D.D., Avella, G.P.: Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Res. 40, 445–452 (2006)

    Google Scholar 

  20. Espinosa-Solares, T., Brito-De la Fuente, E., Tecante, A., Medina-Torres, L., Tanguy, P.A.: Mixing time in rheologically evolving model fluids by hybrid dual mixing systems. Trans. IChemE 80, 817–823 (2002)

    Google Scholar 

  21. Karim, K., Hoffmann, R., Thomas Klasson, K., et al.: Anaerobic digestion of animal waste: effect of mode of mixing. Water Res. 39, 3597–3606 (2005)

    Google Scholar 

  22. Rico, C., Rico, J.L., Muñoz, N., Gómez, B., Tejero, I.: Effect of mixing on biogas production during mesophilic anaerobic digestion of screened dairy manure in a pilot plant. Eng. Life Sci. 11, 476–481 (2011)

    Google Scholar 

  23. Kowalczyk, A., Harnisch, E., Schwede, S., Gerber, M., Span, R.: Different mixing modes for biogas plants using energy crops, applied. Energy. 112, 465–472 (2013)

    Google Scholar 

  24. Kaparaju, P., Buendia, I., Ellegaard, L., Angelidakia, I.: Effects of mixing on methane production during thermophilic anaerobic digestion of manure: Lab-scale and pilot-scale studies. Bioresour. Technolol. 99, 4919–4928 (2008)

    Google Scholar 

  25. Smith, L.C., Elliot, D.J., James, A.: Mixing in up flow anaerobic filters and its influence on performance and scale-up. Water Res. 30, 3061–3073 (1996)

    Google Scholar 

  26. Stroot, P.G., McMahon, K.D., Mackie, R.I., Raskin, L.: Anaerobic co-digestion of municipal solid waste and bio-solids under various mixing conditions—I. Digester performance. Water Res. 35, 1804–1816 (2001)

    Google Scholar 

  27. Kim, M., Ahn, Y.-H., Speece, R.E.: Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. 36, 4369–4385 (2002)

    Google Scholar 

  28. Vavilin, V.A., Angelidaki, I.: Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intesity, and 2D distributed model. Biotechnol. Bioeng. 89, 113–122 (2005)

    Google Scholar 

  29. Abu-Reesh, I., Kargi, F.: Biological responses of hybrid omacellstohydro-dynamic shear in an agitated bioreactor. Enzym. Microbial. Technol. 13, 913–919 (1991)

    Google Scholar 

  30. Shen, F., Tian, L., Yuan, H., Pang, Y., Chen, S., Zou, D., Zhu, B., Liu, Y., Li, X.: Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation. Appl. Biochem. Biotechnol. 171, 626–642 (2013)

    Google Scholar 

  31. Mavros, P., Xuereb, C., Bertrand, J.: Determination of 3-D flow fields in agitated vessels by laser-doppler velocimetry: effect of impeller type and liquid viscosity on liquid flow patterns. Chem. Eng. Res. Des. 74, 658–668 (1996)

    Google Scholar 

  32. Elnekave, M., Tüfekçi̇, N., Ki̇mchi̇e, S., Shelef, G.: Tracing the mixing efficiency of a primary mesophilic anaerobic digester in a municipal wastewater treatment plant. Fresenius Environ. Bull. 15(9b), 1098–1105 (2006)

  33. Borole, A.P., Klasson, K.T., Ridenour, W., Holland, J., Karim, K., Al-Dahhan, M.H.: Methane production in a 100-L up flow bioreactor by anaerobic digestion of farm waste. Appl. Biochem. Biotechnol. 131, 887–896 (2006)

    Google Scholar 

  34. Gómez, X., Cuetos, M.J., Cara, J., Morán, A., et al.: Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes: conditions for mixing and evaluation of the organic loading rate. Renew. Energy 31, 2017–2024 (2006)

    Google Scholar 

  35. Kalia, A.K., Singh, S.P.: Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter. Energy Sources 23, 711–715 (2001)

    Google Scholar 

  36. Brade, C.E., Noone, G.P.: Anaerobic sludge digestion—need it be expensive? Making more of existing resource. Water Pollut. Control 80, 70–94 (1981)

    Google Scholar 

  37. Diaz, L., Trezek, G.: Biogasification of a selected fraction of municipal solid wastes. Compos. Sci. 18(2), 8–13 (1977)

    Google Scholar 

  38. James, S., Wiles, C., Swartzbaugh, J., Smith, R.: Mixing in largescale municipal solid waste-sewage sludge anaerobic digesters. Biotechnol. Bioeng. Symp. 10, 259–272 (1980)

    Google Scholar 

  39. Stenstrom, M., Ng, A., Bhunia, P., Abramson, S.: Anaerobic digestion of municipal solid waste. J. Environ. Eng. 109, 1148–1158 (1983)

    Google Scholar 

  40. Chen, T., Chynoweth, D.P., Biljetina, R.: Anaerobic digestion of municipal solid waste in a nonmixed solids concentrating digestor. Appl. Biochem. Biotechnol. 24(25), 533–544 (1990)

    Google Scholar 

  41. Ho, C.C., Tan, Y.K.: Anaerobic treatment of palm oil mill efFluent® by tank digesters. J. Chem. Technol. Biotechnol. 35, 155–164 (1985)

    Google Scholar 

  42. Hashimoto, A.G.: Effect of mixing duration and vacuum on methane production rate from beef cattle waste. Biotechnol. Bioeng. 24, 9–23 (1983)

    Google Scholar 

  43. Dague, R.R., McKinney, R.E., Pfeffer, J.T.: Solids retention in anaerobic waste treatment systems. J. Water Pollut. Control Fed. Part 2 42(2), R29–R46 (1970)

    Google Scholar 

  44. Mills, P.J.: Minimization of energy input requirements of an anaerobic digester. Agric. Wastes 1, 57–59 (1979)

    Google Scholar 

  45. Smith, R.J., Hein, M.J., Greinier, T.H.: Experimental methane production from animal excreta in pilot-scale and farm-size units. J. Anim. Sci. 48, 202–217 (1979)

    Google Scholar 

  46. Whitmore, T.N., Lloyd, D., Jones, G., Williams, T.N.: Hydrogen- dependent control of the continuous anaerobic digestion process. Appl. Microbiol. Biotechnol. 26, 383–388 (1987)

    Google Scholar 

  47. Dolfing, J.: The energetic consequences of hydrogen gradients in methanogenic ecosystems. FEMS Microbiol. Ecol. 101, 183–187 (1992)

    Google Scholar 

  48. Hoffmann, R.A., Garcia, M.L., Veskivar, M., Karim, K., Al-Dahhan, M.H., Angenent, L.T.: Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnol. Bioeng. 100, 38–48 (2008)

    Google Scholar 

  49. Quasim, S.R., Warren, K.: Methane gas production from anaerobic digestion of cattle manure. Energy Sources 7(4), 319–341 (1984)

    Google Scholar 

  50. Ghaly, A.E., Echiegu, E.A., Ben-Hassan, R.M.: Performance of a continuous mix anaerobic reactor operating under diurnally cyclic temperature. In: Presented at the ASAE International Summer Meeting, Charlotte, North Carolina. ASAE Paper No. 92-6025 (1992)

  51. Robbins, J.E., Armold, M.T., Weiel, J.E.: Anaerobic digestion of cellulose dairy cattle manure mixture. Agric. Wastes 8, 105–118 (1983)

    Google Scholar 

  52. Liew, L.N., Shi, J., Li, Y.: Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment. Bioresour. Technol. 102, 8828–8834 (2011)

    Google Scholar 

  53. Chhabra, R.P., Richardson, J.F.: Non-Newtonian Flow in the Process Industries, 1st edn. Butterworth Heinemann, Oxford (1999)

    Google Scholar 

  54. Nielsen, H.B., Uellendahl, H., Ahring, B.K.: Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenerg. 31, 820–830 (2007)

    Google Scholar 

  55. Sen, M., Barrasso, D., Singh, R., Ramachandran, R.: A multi-scale hybrid CFD-DEM-PBM description of a fluid-bed granulation process. Processes 2, 89–111 (2014)

    Google Scholar 

  56. Tamrakar, A., Ramachandran, R.: CFD–DEM–PBM coupled model development and validation of a 3D top-spray fluidized bed wet granulation process. Comput. Chem. Eng. 125, 249–270 (2019)

    Google Scholar 

  57. Petit, H.A., Paulo, C.I., Cabrera, O.A., Irassar, E.F.: Modelling and optimization of an inclined plane classifier using CFD-DPM and the Taguchi method. Appl. Math. Model. 77, 617–634 (2019)

    MathSciNet  MATH  Google Scholar 

  58. Kloss, C., Goniva, C., Aichinger, G., and Pirker, S.: Comprehensive dem-dpm-cfd simulation model synthesis, experimental validation and scalability. Seventh International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia (2009)

  59. Hosseini, S., Patel, D., Ein-Mozaffari, F., Mehrvar, M.: Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling. Ind. Eng. Chem. Res. 49, 4426–4435 (2010)

    Google Scholar 

  60. Amiri, Z., Movahedirad, S., Shirvani, M., Vahidi, O.: The role of bubble injection characteristics at incipient fluidization condition on the mixing of particles in a gas-solid fluidized bed at high operating pressures: a CFD-DPM approach. Powder Technol. 305, 739–747 (2017)

    Google Scholar 

  61. Hendroko, R.S., Wahonob, S.K., Praptiningsi, G.A., Salafudind Yudhantoe, A.S., Wahyudif, I., Dohongg, S.: The study of optimization hydrolysis substrate retention time and augmentation as an effort to increasing biogas productivity from Jatropha curcas Linn. Capsule husk at two stage digestion. Energy Procedia 47, 255–262 (2014)

    Google Scholar 

  62. Girault, R., Bridoux, G., Nauleau, F., Poullain, C., Buffet, J., Peu, P., et al.: Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design. Bioresour. Technol. 105, 1–8 (2012)

    Google Scholar 

  63. Romero-Güiza, M.S., Vila, J., Mata-Alvarez, J., Chimenos, J.M., Astals, S.: The role of additives on anaerobic digestion: a review. Renew. Sustain. Energy Rev. 58, 1486–1499 (2016)

    Google Scholar 

  64. Mu, H., Chen, Y., Xiao, N.: Effects of metal oxide nanoparticles (TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour. Technol. 102(22), 10305–10311 (2011)

    Google Scholar 

  65. García, A., Delgado, L., Torà, J.A., Casals, E., González, E., Puntes, V.: Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 199–200, 64–72 (2012)

    Google Scholar 

  66. Gemmeke, B., Rieger, C., Weidland, P., Schröder, J.: Biogas-Messprogramm II, 61 Biogasanlagen im Vergleich (in German), pp. 1–168. Guelzow-Pruezen, Germany, Fachagentur Nachwachsende Rohstoffe (2009)

    Google Scholar 

  67. Bridgeman, J.: Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester. Adv. Eng. Softw. 44, 54–62 (2012)

    Google Scholar 

  68. Ghanimeh, S., El Fadel, M., Saikaly, P.: Mixing effect on thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresour. Technol. 117, 63–71 (2012)

    Google Scholar 

  69. Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L.: Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99, 7928–7940 (2008)

    Google Scholar 

  70. Burke, P.E.: Dairy waste anaerobic digestion handbook: options for recovering beneficial products from dairy manure. Environmental Energy Company report (2001). www.mrec.org/pubs/dairy%20waste%20handbook.pdf. Accessed Oct 25

  71. Karim, K., Klasson, K.T., Hoffmann, R., Drescher, S.R., De Paoli, D.W., Al-Dahhan, M.H.: Anaerobic digestion of animal waste: effect of mixing. Bioresour. Technol. 96(14), 1607–1612 (2005)

    Google Scholar 

  72. Casey, T.J.: Requirements and methods for mixing in anaerobic digesters. In: Anaerobic Digestion of Sewage Sludge and Organic Agricultural Wastes, pp. 90–103. Elsevier Applied Science Publishers, New York (1986)

  73. Morgan, P.F., Neuspiel, P.J.: Environmental control of anaerobic digestion with gas diffusion. In: McCabe, J., Eckenfelder, W.W. (eds.) Biological Treatment for Sewage and Industrial Wastes, vol. 2. Reinhold, New York (1958)

    Google Scholar 

  74. Kontandt, H.G., Roediger, A.G.: Engineering operation and economics of methane gas production. In: Schlegel, H.G., Barnea, J. (eds.) Microbial Energy Conversion, pp. 379–392. Pergamon Press, Oxford (1977)

    Google Scholar 

  75. Lee, S.R., Cho, N.K., Maeng, W.J.: Using the pressure of biogas created during anaerobic digestion as the source of mixing power. J. Ferment. Bioeng. 80(4), 415–417 (1995)

    Google Scholar 

  76. Reinhold, G., Markl, H.: Model-based scale-up and performance of the Biogas Tower Reactor for anaerobic waste-water treatment. Water Resource. 31(8), 2057–2065 (1997)

    Google Scholar 

  77. Couvert, A., Roustan, M., Chatellier, P.: Two-phase hydrodynamic study of a rectangular air-lift loop reactor with an internal baffle. Chem. Eng. Sci. 54(21), 5245–5252 (1999)

    Google Scholar 

  78. Kojima, H., Sawai, J., Uchino, H., Ichige, T.: Liquid circulation and critical gas velocity in slurry bubble column with short size draft tube. Chem. Eng. Sci. 54, 5181–5187 (1999)

    Google Scholar 

  79. Karim, K., Varma, R., Vesvikar, M., Al-Dahhan, M.H.: Flow pattern visualization of a simulated digester. Water Resour. 38, 3659–3670 (2004)

    Google Scholar 

  80. Varma, R., Al-Dahhan, M.: Effect of sparger design on hydrodynamics of a gas recirculation anaerobic bioreactor. Biotechnol. Bioeng. 98, 1146–1160 (2007)

    Google Scholar 

  81. Brehmer, M., Eppinger, T., Kraume, M.: Influence of rheology on the flow pattern in stirred biogas plants. Chem. Ing. Technol. 84, 2048–2056 (2012)

    Google Scholar 

  82. Kumaresan, T., Joshi, J.B.: Effect of impeller design on the flow pattern and mixing in stirred tanks. Chem. Eng. J. 115, 173–193 (2006)

    Google Scholar 

  83. Patwardhan, A.W., Joshi, J.B.: Relation between flow pattern and blending in stirred tanks. Ind. Eng. Chem. Res. 38, 3131–3143 (1999)

    Google Scholar 

  84. Ranade, V.V., Mishra, V.P., Saraph, V.S., Deshpande, G.B., Joshi, J.B.: Comparison of axial-flow impellers using a laser doppler anemometer. Ind. Eng. Chem. Res. 31, 2370–2379 (1992)

    Google Scholar 

  85. Pakzad, L., Ein-Mozaffari, F., Chan, P.: Measuring mixing time in the agitation of non-newtonian fluids through electrical resistance tomography. Chem. Eng. Technol. 31, 1838–1845 (2008)

    Google Scholar 

  86. Amanullah, A., Hjorth, S.A., Nienow, A.W.: Cavern sizes generated in highly shear thinning viscous fluids by Scaba 3SHP1 impeller. Chem. Eng. Res. Des. 75, 232–238 (1997)

    Google Scholar 

  87. Wichterle, K., Weing, O.: Threshold of mixing of non-Newtonian liquids. Int. Chem. Eng. 21, 116–120 (1981)

    Google Scholar 

  88. Solomon, J., Elson, T.P., Nienow, A.W., Pace, G.W.: Cavern sizes in agitated fluids with a yield stress. Chem. Eng. Commun. 11, 143–164 (1981)

    Google Scholar 

  89. Elson, T.P., Cheesman, D.J., Nienow, A.W.: X-ray studies of cavern sizes and mixing performance with fluids possessing a yield stress. Chem. Eng. Sci. 41, 2555–2562 (1986)

    Google Scholar 

  90. Elson, T.P.: The growth of caverns formed around rotating impellers during the mixing of a yield stress fluid. Chem. Eng. Commun. 96, 303–319 (1990)

    Google Scholar 

  91. Pakad, L., Ein-Mozaffari, F., Chan, P.: Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress. Chem. Eng. Sci. 63, 2508–2522 (2008)

    Google Scholar 

  92. Kilander, J., Rasmuson, A.: Energy dissipation and macro instabilities in a stirred square tank investigated using an LE PIV approach and LDA measurements. Chem. Eng. Sci. 60(24), 6844–6856 (2005)

    Google Scholar 

  93. Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M.: Handbook of Industrial Mixing. Wiley, New Jersey (2004)

    Google Scholar 

  94. Rivard, C.J., Himmel, M.E., Vinzant, T.B., Adney, W.S., Wyman, C.E., Grohmann, K.: Anaerobic-digestion of processed municipal solid-waste using a novel high solids reactor–maximum solids levels and mixing requirements. Biotechnol. Lett. 12(3), 235–240 (1990)

    Google Scholar 

  95. Chudacek, M.W.: Impeller power numbers and impeller flow numbers in profiled bottom tanks. Ind. Eng. Chem. Process Des. Dev. 24(3), 858–867 (2002)

    Google Scholar 

  96. Ankamma, R.D., Sivashanmugam, P.: Experimental and CFD simulation studies on power consumption in mixing usingenergy saving turbine agitator. J. Ind. Eng. Chem. 16, 157–161 (2010)

    Google Scholar 

  97. Ge, C.Y., Wang, J.J., Gu, X.P., Feng, L.F.: CFD simulation and PIV measurement of the flow field generated by modified pitched blade turbine impellers. Chem. Eng. Res. Des. 92, 1027–1036 (2013)

    Google Scholar 

  98. Bakker, C.W., Meyer, C.J., Deglon, D.A.: Numerical modeling of non-Newtonian slurry in a mechanical flotation cell. Miner. Eng. 22, 944–950 (2009)

    Google Scholar 

  99. Ascanio, G., Foucault, S., Tanguy, P.: Performance of a new mixed down pumping impeller. Chem. Eng. Technol. 26(8), 908–911 (2003)

    Google Scholar 

  100. Cabaret, F., Fradette, L., Tanguy, P.A.: Gas-liquid mass transfer in un-baffled dual-impeller mixers. Chem. Eng. Sci. 63, 1636–1647 (2008)

    Google Scholar 

  101. Ding, J., Wang, X., Zhou, X.F., Ren, N.Q., Guo, W.Q.: CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresour. Technol. 101(18), 7005–7013 (2010)

    Google Scholar 

  102. Lemmer, A., Naegele, H.J., Sondermann, J.: How efficient are agitators in biogas digesters? Determination of the efficiency of submersible motor mixers and incline agitators by measuring nutrient distribution in full-scale agricultural biogas digesters. Energies 6, 6255–6273 (2013)

    Google Scholar 

  103. Pakzad, L., Ein-Mozaffari, F., Upreti, S.R., Lohi, A.: Characterization of the mixing of non-newtonian fluids with a scaba 6SRGT impeller through ert and CFD. Can. J. Chem. Eng. 91, 90–100 (2013)

    Google Scholar 

  104. Foucault, S., Ascanio, G., Tanguy, P.A.: Coaxial mixer hydrodynamics with Newtonian and non-Newtonian fluids. Chem. Eng. Technol. 27, 324–329 (2004)

    Google Scholar 

  105. Foucault, S., Ascanio, G., Tanguy, P.A.: Power characteristics in coaxial mixing: Newtonian and non-Newtonian fluids. Ind. Eng. Chem. Res. 44, 5036–5043 (2005)

    Google Scholar 

  106. Foucault, S., Ascanio, G., Tanguy, P.A.: Mixing time in coaxial mixers with Newtonian and non-Newtonian fluids. Ind. Eng. Chem. Res. 45, 352–359 (2006)

    Google Scholar 

  107. Farhat, M., Rivera, C., Fradette, L., Heniche, M., Tanguy, P.A.: Numerical and experimental study of dual-shaft coaxial mixer with viscous fluids. Ind. Eng. Chem. Res. 46, 5021–5031 (2007)

    Google Scholar 

  108. Farhat, M., Fradette, L., Tanguy, P.A.: Revisiting the performance of a coaxial mixer. Ind. Eng. Chem. Res. 47, 3562–3567 (2008)

    Google Scholar 

  109. Li, Z., Bao, Y., Gao, Z.: PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks. Chem. Eng. Sci. 66, 1219–1231 (2011)

    Google Scholar 

  110. Pakzad, L., Ein-Mozaffari, F., Upreti, S.R., Lohi, A.: Agitation of Herschel-Bulkley fluids with the Scaba–anchor coaxial mixers. Chem. Eng. Res. Des 91, 761–777 (2013)

    Google Scholar 

  111. Pakzad, L., Ein-Mozaffari, F., Upreti, S.R., Lohi, A.: Using tomography to assess the efficiency of the coaxial mixers in agitation of yield-pseudoplastic fluids. Chem. Eng. Res. Des 91, 1715–1724 (2013)

    Google Scholar 

  112. Rivera, C., Foucault, S., Heniche, M., Espinosa-Solares, T., Tanguy, P.A.: Mixing analysis in a coaxial mixer. Chem. Eng. Sci. 61, 2895–2907 (2006)

    Google Scholar 

  113. Rudolph, L., Schaefer, M., Atiemo-Obeng, V., Kraume, M.: Experimental and numerical analysis of power consumption for mixing of high viscosity fluids with a coaxial mixer. Chem. Eng. Res. Des. 85, 568–572 (2007)

    Google Scholar 

  114. Bonnet, S., Cabaret, F., Fradette, L., Tanguy, P.A.: Characterization of mixing patterns in a coaxial mixer. Chem. Eng. Res. Des. 85, 1129–1135 (2007)

    Google Scholar 

  115. Pakzad, L., Ein-Mozaffari, F., Upreti, S.R., Lohi, A.: Evaluation of the mixing of non-Newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD. Chem. Eng. J. 215–216, 279–296 (2013)

    Google Scholar 

  116. Pakzad, L., Ein-Mozaffari, F., Upreti, S.R., Lohi, A.: A Novel and energy efficient coaxial mixer for agitation of Non-Newtonian fluids possessing yield stress. Chem. Eng. Sci. 101, 642–654 (2013)

    Google Scholar 

  117. Gerogiorgis, D.I., Ydstie, B.E.: Multiphysics CFD modelling for design and simulation of a multiphase chemical reactor. Chem. Eng. Res. Des. 86(A6), 603–610 (2005)

    Google Scholar 

  118. Kolaczkowski, S.T., Chao, R., Awdry, S., Smith, A.: Application of a CFD code (Fluent®) to formulate models of catalytic gas phase reactions in porous catalyst pellets. Chem. Eng. Res. Des. 85(A11), 1539–1552 (2007)

    Google Scholar 

  119. Roy, S., Dhotre, M.T., Joshi, J.B.: CFD simulation of flow and axial dispersion in external loop airlift reactor. Chem. Eng. Res. Des. 84(A8), 677–690 (2006)

    Google Scholar 

  120. Joshi, J.B., Nere, N.K., Rane, C.V., Murthy, B.N., Mathpati, C.S., Patwardhan, A.W., Ranade, V.V.: CFD simulation of stirred tanks: comparison of turbulence models. Part I: Radial flow impellers. Can. J. Chem. Eng. 89, 23–82 (2011)

    Google Scholar 

  121. Sokolichin, A., Eigenberger, G., Lapin, A.: Simulation of buoy-ancy driven bubbly flow: established simplifications and open questions. AIChE J. 50, 24–45 (2004)

    Google Scholar 

  122. Sowana, D.D., Williams, D.R.G., Dunlop, E.H., Dally, B.B., O’Neill, B.K., Fletcher, D.F.: Turbolent shear stress effects on plant cell suspension cultures. Trans. IChemE 79, 867–875 (2001)

    Google Scholar 

  123. Merchuk, J.C., Rosenblat, Y., Berzin, I.: Fluid flow and mass transfer in a counter-current gas–liquid inclined tubes photo-bioreactor. Chem. Eng. Sci. 62, 7414–7425 (2007)

    Google Scholar 

  124. Yu, G., Li, Y., Shen, G., Wang, W., Lin, C., Wu, H., Chen, Z.: A novel method using CFD to optimize the inner structure parameters of flat photobioreactors. J. Appl. Phycol. 21(6), 719–727 (2009)

    Google Scholar 

  125. Dhotre, M.T., Joshi, J.B.: Two-dimensional CFD model for prediction of pressure drop and heat transfer coefficient in bubble column reactors. Trans. IChemE Part A 78, 689–707 (2004)

    Google Scholar 

  126. Cao, X., Zhang, T., Zhao, Q.: Computational simulation of fluid dynamics in a tubular stirred reactor. Trans. Nonferr. Metals Soc. China 19, 489–495 (2009)

    Google Scholar 

  127. Bannaria, R., Kerdoussb, F., Selmaa, B., Bannaria, A., Proulxa, P.: Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns. Comput. Chem. Eng. 32, 3224–3237 (2008)

    Google Scholar 

  128. Jahoda, M., Mostek, M., Kukukova, A., Machon, V.: CFD modelling of liquid homogenisation in stirred tanks with one and two impellers using large eddy simulation. Chem. Eng. Res. Des 85(A5), 616–625 (2007)

    Google Scholar 

  129. Fleming, J.G.: Novel simulation of anaerobic digestion using computational fluid dynamics. Ph.D. diss. Raleigh, N.C.: North Carolina State University, Department of Mechanical Engineering (2002)

  130. Vesvikar, M.S., Al-Dahhan, M.: Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnol. Bioeng. 89, 719–732 (2005)

    Google Scholar 

  131. Wong, T.I.: Numerical flow simulations of an egg-shaped anaerobic sludge digester in wastewater treatment. Masters thesis. Hong Kong, China: School of Engineering, Hong Kong University of Science and Technology (2005)

  132. Wu, B., Chen, S.: CFD simulation of non-Newtonian flow in anaerobic digesters. Biotechnol. Bioeng. 99(3), 700–711 (2008)

    Google Scholar 

  133. Meroney, R.N.: CFD simulation of mechanical draft tube mixing in anaerobic digester tanks. Water Res. 43, 1040–1050 (2009)

    Google Scholar 

  134. Yu, L., Ma, J., Chen, S.: Numerical simulation of mechanical mixing in high solid anaerobic digester. Bioresour. Technol. 102, 1012–1018 (2011)

    Google Scholar 

  135. Wu, B.: Computational Fluid Dynamics investigation of turbulence models for non-Newtonian fluid flow in anaerobic digesters. Environ. Sci. Technol. 44, 8989–8995 (2010)

    Google Scholar 

  136. Kritzinger, H.P.: Hydrodynamics of a monolithic stirrer reactor. PhD thesis, Technical University Delft (2010)

  137. Wu, B.: CFD simulation of gas and non-Newtonian fluid two-phase flow in an anaerobic digester. Water Res. 44, 3861–3874 (2010)

    Google Scholar 

  138. Keshtkar, A., Meyssami, B., Abolhamd, G., Ghaforian, H., Asadi, M.K.: Mathematical modeling of non-ideal mixing continuous flow reactors for anaerobic digestion of cattle manure. Bioresour. Technol. 87, 113–124 (2003)

    Google Scholar 

  139. Wu, B.: Advances in the use of CFD to characterize, design and optimize bioenergy systems. Comput. Electron. Agric. 93, 195–208 (2013)

    Google Scholar 

  140. Vesvikar, M.S., Varma, R., Karim, K., Al-Dahhan, M.: Flow pattern visualisation in a mimic anaerobic digester: experimental and computational studies. Water Sci. Technol. 52(1–2), 537–543 (2005)

    Google Scholar 

  141. Wu, B.: CFD analysis of mechanical mixing in anaerobic digesters. Trans. ASABE 52(4), 1371–1382 (2009)

    Google Scholar 

  142. Wu, B.: CFD prediction of mixing time in anaerobic digesters. Trans. ASABE 53(2), 553–563 (2010)

    Google Scholar 

  143. Wu, B.: CFD simulation of gas and non-Newtonian fluid two-phase flow in anaerobic digesters. Water Res. 44, 3861–3874 (2010)

    Google Scholar 

  144. Wu, B.: Computational fluid dynamics investigation of turbulence models for non-Newtonian fluid flow in anaerobic digesters. Environ. Sci. Technol. 44(23), 8989–8995 (2010)

    Google Scholar 

  145. Wu, B.: CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water Res. 45, 2082–2094 (2011)

    Google Scholar 

  146. Wu, B.: Large eddy simulation of mechanical mixing in anaerobic digesters. Biotechnol. Bioeng. 109, 804–812 (2012)

    Google Scholar 

  147. Mendoza, A.M., Martínez, T.M., Montañana, V.F., Jiménez, P.A.L.: Modeling flow inside an anaerobic digester by CFD techniques. Int. J. Energy Environ. 2(6), 963–974 (2011)

    Google Scholar 

  148. Karim, K., Thoma, G.J., Al-Dahhan, M.H.: Gas-lift digester configuration effects on mixing effectiveness. Waster Res. 41, 3051–3060 (2007)

    Google Scholar 

  149. Wang, X., Ding, J., Guo, W., Ren, N.: Scale-up and optimization of biohydrogen production reactor from laboratory-scale to industrial-scale on the basis of computational fluid dynamics simulation. Int. J. Hydrog. Energy 35, 10960–10966 (2010)

    Google Scholar 

  150. Lima, M.G.S., de Farias Neto, S.R., de Lima, A.G.B., Nunes, F.C.B., de Andrade Gomes, L.: Theoretical/experimental study of an up-flow anaerobic sludge blanket reactor treating domestic wastewater. Int. J. Chem. Reactor Eng. 9, A59 (2011)

    Google Scholar 

  151. Wang, X., Ding, J., Ren, N., Liu, B., Guo, W.: CFD simulation of an expanded granular sludge bed (EGSB) reactor for bio-hydrogen production. Int. J. Hydrog. Energy 34, 9686–9695 (2009)

    Google Scholar 

  152. Wang, X., Ding, J., Guo, W., Ren, N.: A hydrodynamics–reaction kinetics coupled model for evaluating bioreactors derived from CFD simulation. Bioresour. Technol. 101, 9749–9757 (2010)

    Google Scholar 

  153. Pruvost, J., Legrand, J., Legentilhomme, P., Muller-Feuga, A.: Simulation of microalgae growth in limiting light conditions: flow effect. AIChE J. 48, 1109–1120 (2002)

    Google Scholar 

  154. Pruvost, J., Pottier, L., Legrand, J.: Numerical investigation of hydrodynamic and mixing conditions in a torus photobioreactor. Chem. Eng. Sci. 61, 4476–4489 (2006)

    Google Scholar 

  155. Wu, L.B., Li, Z., Song, Y.Z.: Hydrodynamic conditions in designed spiral photobioreactors. Bioresour. Technol. 101(2010), 298–303 (2010)

    Google Scholar 

  156. Sato, T., Yamada, D., Hirabayashi, S.: Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Convers. Manag. 51(6), 1196–1201 (2010)

    Google Scholar 

  157. Yoshimoto, N., et al.: Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J. Appl. Phycol. 17, 207–214 (2005)

    Google Scholar 

  158. Pruvost, J., Legrand, J., Legentilhomme, P., Rosant, J.M.: Numerical investigation of bend and torus flows, Part II: flow simulation in torus reactor. Chem. Eng. Sci. 59(16), 3359–3370 (2004)

    Google Scholar 

  159. Pruvost, J., Legrand, J., Legentilhomme, P.: Numerical investigation of bend and torus flows, Part I: effect of swirl motion on flow structure in U-bend. Chem. Eng. Sci. 59(16), 3345–3357 (2004)

    Google Scholar 

  160. Gupta, A.K., Lilley, D.G., Syred, N.: Energy and Engineering Science Series, Swirl Flows. Abacus Press, Cambridge (1984)

    Google Scholar 

  161. Wasewar, K.L., Sarathi, J.V.: CFD modeling and simulation of jet mixed tanks. Eng. Appl. Comput. Fluid Mech. 2(2), 155–171 (2008)

    Google Scholar 

  162. Meroney, R.N., Colorado, P.E.: CFD simulation of mechanical draft tube mixing in anaerobic digester tanks. Water Res. 43, 1040–1050 (2009)

    Google Scholar 

  163. Kaiser, S.C., Eibl, R., Eibl, D.: Engineering characteristics of a single-use stirred bioreactor at bench-scale: the Mobius Cell Ready 3L bioreactor as a case study. Eng. Life Sci. 11(4), 359–368 (2011)

    Google Scholar 

  164. Rihania, R., Guerri, O., Legrand, J.: Three dimensional CFD simulations of gas–liquid flow in milli torus reactor without agitation. Chem. Eng. Process. 50, 369–376 (2011)

    Google Scholar 

  165. Karim, K., Thomaa, G.J., Al-Dahhan, M.H.: Gas-lift digester configuration effects on mixing effectiveness. Water Res. 41, 3051–3060 (2007)

    Google Scholar 

  166. Khopkar, A.R., Aubin, J., Xuereb, C., Le Sauze, N., Bertrand, J., Ranade, V.V.: Gas–liquid flow generated by apitched-blade turbine: particle image velocimetry measurements and computational fluid dynamicssimulations. Ind. Eng. Chem. Res. 42, 5318–5332 (2003)

    Google Scholar 

  167. Luo, H., Al-Dahhan, M.H.: Local. characteristics of hydrodynamics in draft tube airlift. Chem. Eng. Sci. 63, 3057–3068 (2008)

    Google Scholar 

  168. Van Baten, J.M., Ellenberger, J., Krishna, R.: Hydrodynamics of internal airlift reactors: experiments versus CFD simulations. Chem. Eng. Process. 42, 733–742 (2003)

    Google Scholar 

  169. Moraveji, M.K.: Hydrodynamic analysis of a concentric draft tube airlift reactor using computational fluid dynamics. Middle-East J. Sci. Res. 12(10), 1420–1425 (2012)

    Google Scholar 

  170. Manea, E., Robescu, D.: Simulation of mechanical mixing in anaerobic digester. U.P.B. Sci. Bull. Ser. D 74, 2 (2012)

    Google Scholar 

  171. Zhu, B.N., Zhang, R.H., Gikas, P., Rapport, J., Jenkins, B., Li, X.J.: Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresour. Technol. 101(16), 6374–6380 (2010)

    Google Scholar 

  172. Garcia-Bernet, D., Loisel, D., Guizard, G., Buffiere, P., Steyer, J.P., Escudie, R.: Rapid measurement of the yield stress of anaerobically-digested solid waste using slump tests. Waste Manag. 31, 631–635 (2011)

    Google Scholar 

  173. Wu, B.X.: CFD simulation of mixing for high-solids anaerobic digestion. Biotechnol. Bioeng. 109, 2116–2126 (2012)

    Google Scholar 

  174. Landry, H., Lague, C., Roberge, M.: Physical and rheological properties of manure slurry. Appl. Eng. Agric. 20(3), 277–288 (2004)

    Google Scholar 

  175. Moeller, G., Torres, L.G.: Rheological characterization of primary and secondary sludges treated by both aerobic and anaerobic digestion. Bioresour. Technol. 61(3), 207–211 (1997)

    Google Scholar 

  176. Viamajala, S., Mcmillan, J.D., Schell, D.J., Elander, R.T.: Rheology of corn stover slurries at high solids concentrations—effects of saccharification and particle size. Bioresour. Technol. 100, 925–934 (2009)

    Google Scholar 

  177. Wiman, M., Palmqvist, B., Tornberg, E., Liden, G.: Rheological characterization of diluite acid pretreated softwood. Biotechnol. Bioeng. 108(5), 1031–1041 (2011)

    Google Scholar 

  178. Dasari, R.K., Eric, Berson R.: The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries. Appl. Biochem. Biotechnol. 137, 289–299 (2007)

    Google Scholar 

  179. El-Mashad, H.M., Zeeman, G., van Loon Wilko, K.P., Bot Gerar, P.A., Lettinga, G.: Effect of temperature and temperature fluctation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 95, 191 (2004)

    Google Scholar 

  180. Carreau, P.J., Chhabra, R.P., Cheng, J.: Effect of rheological properties on power consumption with helical ribbon agitators. AIChE J. 39(9), 1421–1430 (1993)

    Google Scholar 

  181. Nagata, S.: Mixing Principles and Applications. Wiley, New York (1975)

    Google Scholar 

  182. Tian, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., Li, X.: Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion. Bioresour. Technol. 168, 86–91 (2014)

    Google Scholar 

  183. Wei, P., Tan, Q., Uijttewaal, W., van Liera, J.B., de Kreuka, M.: Experimental and mathematical characterisation of the rheological instability of concentrated waste activated sludge subject to anaerobic digestion. Chem. Eng. J. 349, 318–326 (2018)

    Google Scholar 

  184. Morales-Barrera, L., Cristiani-Urbina, E.: Removal of hexavalent chromium by Trichoderma viride in an airlift bioreactor. Enzym. Microbial Technol. 40, 107–113 (2006)

    Google Scholar 

  185. Norton, T., Sun, D.W., Grant, J., Fallon, R., Dodd, V.: Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review. Bioresour. Technol. 98, 2386–2414 (2007)

    Google Scholar 

  186. Yin, C.E., Kaer, S.K., Rosendahl, L., Hvid, S.L.: Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation. Bioresour. Technol. 101(11), 4169–4178 (2010)

    Google Scholar 

  187. Vesvikar, M.S., Al-Dahhan, M.: Hydrodynamics investigation of laboratory-scale internal gas-lift loop anaerobic digester using non-invasive CAPRT technique. Biomass Bioenerg. 84, 98–106 (2006)

    Google Scholar 

  188. Oniscu, C., Galaction, A.I., Cascaval, D., Urungureanu, F.: Modeling of mixing in stirred bioreactors 2. Mixing time for non-aerated broths. Biochem. Eng. J. 12, 61–69 (2002)

    Google Scholar 

  189. Merchuk, J.C., Contreras, A., García, F., Molina, E.: Studies of mixing in a concentric tube airlift bioreactor with different spargers. Chem. Eng. Sci. 53(4), 709–719 (1998)

    Google Scholar 

  190. Cascaval, D., Oniscu, C., Galaction, A.I., Urungureanu, F.: Prediction of mixing time for anaerobic stirred bioreactors. Chem. Ind. 55(9), 367–375 (2001)

    Google Scholar 

  191. Pinho, S.C., Ratusznei, S.M., Domingues-Rodrigues, J.A., Foresti, E., Foresti, M., Zaiat, M.: Influence of the agitation rate on the treatment of partially soluble wastewater in anaerobic sequencing batch biofilm reactor. Water Res. 38, 4117–4124 (2004)

    Google Scholar 

  192. Hadjiev, D., Sabiri, N.E., Zanati, A.: Mixing time in bioreactors under aerated conditions. Biochem. Eng. J. 27, 323–330 (2006)

    Google Scholar 

  193. Sanchez Miron, A., Ceron Garcia, M.C., Garcia Camacho, F., Molina Grima, E., Chisti, Y.: Mixing in bubble column and airlift reactors. Chem. Eng. Res. Des. 82, 1367–1374 (2004)

    Google Scholar 

  194. Pramparo, L., Pruvost, J., Stuber, F., Font, J., Fortuny, A., Fabregat, A., Legentilhomme, P., Legrand, J., Bengo, C.: Mixing and hydrodynamics investigation using CFD in a square-sectioned torus reactor in batch and continuous regimes. Chem. Eng. J. 137, 386–395 (2008)

    Google Scholar 

  195. Tanguy, P.A., Thibault, F., Brito De La Fuente, E., Espinosa-Solares, T., Tecante, A.: Mixing performance induced by coaxial flan blade-helical ribbon impellers rotating at different speeds. Chem. Eng. Sci. 52(11), 1733–1741 (1997)

    Google Scholar 

  196. Sanchez-Cervantes, M.I., Lacombe, J., Muzzio, F.J., Álvarez, M.M.: Novel bioreactor for the culture of suspended mammalian cells. Part I: mixing characterization. Chem. Eng. Sci. 61, 8075–8084 (2006)

    Google Scholar 

  197. Couvert, A., Bastoul, D., Roustan, M., Chatellier, P.: Hydrodynamic and mass transfer study in rectangular three-phase air-lift reactor. Chem. Eng. Process. 43, 1381–1387 (2004)

    Google Scholar 

  198. Miron, A.S., Garcia, M.C.C., Camacho, F.G., Grima, E.M., Chisti, Y.: Mixing in bubble column and airlift reactors. Chem. Eng. Res. Des. 82, 1367–1374 (2004)

    Google Scholar 

  199. Karamanev, D.G., Chavarie, C., Samson, R.: Hydrodynamics and mass transfer in an airlift reactor with a semipermeable draft tube. Chem. Eng. Sci. 51, 1173–1176 (1996)

    Google Scholar 

  200. Verlaan, P., Van Eijs, A.M.M., Tramper, J., Van’t Riet, K., Luyben, KChAM: Estimation of axial dispersion in individual sections of airlift-loop reactor. Chem. Eng. Sci. 44, 1139–1146 (1989)

    Google Scholar 

  201. Lu, W., Hwang, S.J., Chang, C.M.: Liquid mixing in internal loop airlift reactors. Ind. Eng. Chem. Res. 33, 2180–2186 (1994)

    Google Scholar 

  202. Guo, Y.X., Rathor, M.N., Ti, H.C.: Hydrodynamics mass transfer studies in a novel external-loop airlift reactor. Chem. Eng. J. 67, 205–214 (1997)

    Google Scholar 

  203. Acien Fernandez, F.C., Fernandez Sevilla, J.M., Sanchez Perez, J.A., Molina Grima, E., Chisti, Y.: Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem. Eng. Sci. 56, 2721–2732 (2001)

    Google Scholar 

  204. Stoker, E.B.: Comparative Studies on Scale-up Methods of Single-Use Bioreactors. USA: Utah State University (M.Sc. thesis), 54–73 (2011)

  205. Philichi, T., Stenstrom, M.K.: Effects of dissolved oxygen probe lag on oxygen transfer parameter estimation. J. Water Pollut. Control Fed. 61, 83–86 (1989)

    Google Scholar 

  206. Bellucci, J.J., Hamaker, K.H.: Evaluation of oxygen transfer rates in stirred-tank bioreactors for clinical manufacturing. Biotechnol. Prog. 27(2), 368–376 (2011)

    Google Scholar 

  207. Jorjani, P., Ozturk, S.S.: Effects of cell density and temperature on oxygen consumption rate for different mammalian cell lines. Biotechnol. Bioeng. 64(3), 349–356 (1999)

    Google Scholar 

  208. Zhanga, A., Tsanga, V.L., Korke-Kshirsagarb, R., Ryll, T.: Effects of pH probe lag on bioreactor mixing time estimation. Process Biochem. 49, 913–916 (2014)

    Google Scholar 

  209. Hopfner-Sixt, K., Amon, T.: Monitoring of agricultural biogas plants in Austria—Mixing technology and specific values of essential process parameters. In: Proceedings of the 15th European Biomass Conference and Exhibition, Berlin, Germany, 7–11 May 2007, pp. 1718–1728 (2007)

  210. Weiland, P.: Biogas—Ein zukunftsweisender Energieträger (in German). In: Medenbach, M.C. (ed.) Erneuerbare Energie in der Land(wirt)schaft, pp. 1–184. Austernfischer Verlag, Zeven (2001)

    Google Scholar 

  211. Benbelkacem, H., Garcia-Bernet, D., Bollon, J., Loisel, D., Bayard, R., Steyer, J.F., Gourdon, R., Buffière, P., Escudié, R.: Liquid mixing and solid segregation in high-solid anaerobic digesters. Bioresour. Technol. 147, 387–394 (2013)

    Google Scholar 

  212. Martin, A.D.: Interpretation of residence time distribution data. Chem. Eng. Sci. 55, 5907–5917 (2000)

    Google Scholar 

  213. Escudiè, R., Conte, T., Steyer, J.F., Delgenes, J.F.: Hydrodynamic and bio-kinetic models of an anaerobic fixed-bed reactor. Process. Biochem. 40, 2311–2323 (2005)

    Google Scholar 

  214. Himmelblau, D. M.: Principios básicos y cálculos en Ingeniería Química, 6ª Edición, Prentice Hall Hispanoamericana (1997)

  215. Nauman, E.B.: Residence time distributions. In: Paul, E.L., Atiemo-Obeng, V.A., Kresta, S.M. (eds.) Handbook on Industrial Mixing. Wiley, New Jersey (2003)

    Google Scholar 

  216. Monteith, H.D., Stephenson, J.P.: Mixing efficiencies in full-scale anaerobic digesters by tracer methods. J. Water Pollut. Control Fed. 53, 78–84 (1981)

    Google Scholar 

  217. Smith, L.C., Elliot, D.J., James, A.: Characterization of mixing patterns in an anaerobic digester by means of tracer curve analysis. Ecol. Model. 69, 267–285 (1993)

    Google Scholar 

  218. Bello-Mendoza, R., Sharratt, P.N.: Analysis of retention time distribution (RTD) curves in an anaerobic digester with confined-gas mixing using a compartment model. Water Sci. Technol. 40(8), 49–56 (1999)

    Google Scholar 

  219. Rundle, H., Whyley, J.: A comparison of gas recirculation systems for mixing of contents of anaerobic digesters. Water Pollut. Control 80(4), 463–480 (1981)

    Google Scholar 

  220. Leighton, I.R., Forster, C.F.: Mixing characteristics of a two-phase anaerobic digester. Process Saf. Environ. Prot. 74(2), 99–104 (1996)

    Google Scholar 

  221. Stukenberg, J.R., Clark, J.H., Sandine, J., Naydo, W., (1992). Egg shaped digesters: from Germany to the U.S. Water Environment & Technology., 4, (4), 42-51

  222. He, M.M., Turkoglu, M., Sakr, A.: Drug content uniformity of binary powder blends in the rotary fluid bed granulator. Pharm. Ind. 57(11), 945–949 (1995)

    Google Scholar 

  223. Nakamoto, H., Chikao, O.: Mixing performance of lattice-type twisting blade for new periodic-type polymerization reactor for high-viscosity liquid. AIChE Symp. Ser. 89(293), 27–30 (1993)

    Google Scholar 

  224. Sagawa, R.: Fundamental knowledge of pharmaceutical procedures (5). Overview of mixing: the first half. Pharm. Technol. 16(1), 49–59 (2000)

    Google Scholar 

  225. Shen, J., Gogos, C.G.: Statistical measurements of mixtures. In: Society of Plastics Engineers Annual Technical Conference, 50th (2), 1804–1808 (1992)

  226. Yu, L., Zhao, Q., Ma, J., Frear, C., Chen, S.: Experimental and modeling study of a two-stage pilot scale high solid anaerobic digester system. Bioresour. Technol. 124, 8–17 (2012)

    Google Scholar 

  227. Yu, W., Wang, T., Liu, M., Wang, Z.: Bubble circulation regimes in a multi-stage internal-loop airlift reactor. Chem. Eng. J. 142(3), 301–308 (2008)

    Google Scholar 

  228. Pang, C., Lee, J.W., Kang, Y.T.: Review on combined heat and mass transfer characteristics in Nanofluids. Int. J. Therm. Sci. 87, 49–67 (2015)

    Google Scholar 

  229. Sheikholeslami, M., Ganji, D.D.: Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput. Methods Appl. Mech. Eng. 283, 651–663 (2015)

    MathSciNet  MATH  Google Scholar 

  230. Wen, J.P., Jia, X.Q., Feng, W.: Hydrodynamic and mass transfer of gas-liquid-solid three-phase internal loop airlift reactors with nanometer solid particles. Chem. Eng. Technol. 28(1), 53–60 (2005)

    Google Scholar 

  231. Bugay, S., Escudie, R., Line, A.: Experimental analysis of hydrodynamics in axially agitated tank. AIChE J. 48, 463–475 (2002)

    Google Scholar 

  232. Le Hyaric, R., Chardin, C., Benbelkacem, H., Bollon, J., Bayard, R., Escudie, R., Buffiere, P.: Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresour. Technol. 102, 822–827 (2012)

    Google Scholar 

  233. Le Hyaric, R., Benbelkacem, H., Bollon, J., Bayard, R., Escudie, R., Buffiere, P.: Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate. J. Chem. Technol. Biotechnol. 87, 1032–1035 (2012)

    Google Scholar 

  234. Ren, T.T., Mu, Y., Liu, L., Li, X.Y., Yu, H.Q.: Quantification of the shear stresses in a microbial granular sludge reactor. Water Research 43, 4643–4651 (2009)

    Google Scholar 

  235. Pan, C.M., Min, J., Liu, X.H., Gao, Z.M.: Investigation of fluid flow in a dual Rushton impeller stirred tank using particleimage velocimetry. Chin. J. Chem. Eng. 16, 693–699 (2008)

    Google Scholar 

  236. Ganzoury, M.A., Allam, N.K.: Impact of nanotechnology on biogas production: a mini-review. Renew. Suitable Energy Rev. 50, 1392–1404 (2015)

    Google Scholar 

  237. Marshall, J.S., Sala, K.: A stochastic Lagrangian approach for simulating the effect of turbulent mixing on algae growth rate in a photobioreactor. Chem. Eng. Sci. 66(3), 384–392 (2011)

    Google Scholar 

  238. Perner-Nochta, I., Posten, C.: Simulations of light intensity variation in photobioreactors. J. Biotechnol. 131, 276–285 (2007)

    Google Scholar 

  239. Sun, Q., Xiao, W., Xi, D., Shi, J., Yan, X., Zhou, Z.: Statistical optimization of biohydrogen production from sucrose by a co-culture of Clostridium acidisoli and Rhodobacter sphaeroides. Int. J. Hydrog. Energy 35, 4076–4084 (2010)

    Google Scholar 

Download references

Acknowledgements

Funding was provided by European Commision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grazia Leonzio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leonzio, G. Studies of Mixing Systems in Anaerobic Digesters using CFD and the Future Applications of Nanotechnologies. Waste Biomass Valor 11, 5925–5955 (2020). https://doi.org/10.1007/s12649-019-00828-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-019-00828-1

Keywords

Navigation